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Chaos properties and localization in Lorentz lattice gases

C. Appert* and M. H. Ernst
Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80 006, 3508 TA Utrecht, The Netherlands

~Received 7 January 1997!

The thermodynamic formalism of Ruelle, Sinai, and Bowen@David Ruelle,Thermodynamic Formalism
~Addison-Wesley, Reading, MA, 1978!#, in which chaotic properties of dynamical systems are expressed in
terms of a free-energy–type functionc~b!, is applied to a Lorentz lattice gas, as typical for diffusive systems
with static disorder. In the limit of large system sizes, the mechanism and effects of localization on large
clusters of scatterers in the calculation ofc~b! are elucidated and supported by strong numerical evidence.
Moreover, we clarify and illustrate a previous theoretical analysis@C. Appertet al., J. Stat. Phys.87, 1253
~1997!# of this localization phenomenon.@S1063-651X~97!00611-9#

PACS number~s!: 05.45.1b, 05.40.1j, 47.52.1j
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I. INTRODUCTION

Chaos theory was originally developed for determinis
systems, hence its namedeterministicchaos. When it is ap-
plied to fluid dynamics~at a microscopic scale, i.e., the sca
of moving and colliding particles!, an open question is to
relate it to macroscopic transport theory. This question
lead to a growing interest in extending chaos theory to s
chastic dynamics such as random walks in random envi
ments. It has been discussed extensively in Refs.@1,2# how
the stochastic dynamics of such statistical-mechanical
tems can be expressed as a deterministic map, from w
chaos properties can be calculated.

A powerful tool for calculating chaos properties in a un
fied way for both deterministic and stochastic systems is
thermodynamic formalism, introduced by Ruelle, Sinai, an
Bowen@3#. The scope of this formalism, however, goes w
beyond this application. We will now give a rough introdu
tion to this formalism.

Many nonlinear physical problems involve a complicat
discrete distribution function$pi%. As it may vary in a very
irregular way withi , it would be attractive to replace$pi% by
a smooth function containing the same information about
structure of the distribution. One way to do this is to asso
ate with the distribution a whole set of so-called escort d
tributions @4#, defined asPi5(pi)

b/Z(b), whereZ(b) is a
partition functionZ(b)[( i(pi)

b. The parameterb allows
one to scan the structure of the initial distribution. Largeb
values enhance the most probable trajectories, whereas n
tive b’s focus on the least probable trajectories@we impose
that (pi)

b50 if pi50, so that our definitions still hold fo
negativeb’s#. By analogy with thermodynamics whereb
would be an inverse temperature, a free-energy–like func
c~b! is introduced, which is related to the logarithm of th
dynamic partition functionZ(b).

This formalism has been applied successfully, for
stance, to multifractals@5#. The present paper deals with a
other frame of application of this formalism, i.e., the chao
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properties of dynamical systems. For a given map~we will
assume hyperbolicity in order to ensure good ergodic
properties!, the phase space is partitioned into cells. Ea
sequence of cells explored by a trajectory (r 0 ,...,r t) in t
time steps is one pointV t of thedynamical phase space. We
shall refer to it as a trajectory overt time steps.~Mathemati-
cally, this could also be formulated in terms of cylinder se
i.e., the set of initial conditions that follow the trajectoryV t

during the firstt time steps.!
Notice that in the special case of stochastic processes

discrete space, the phase space is naturally discretized.
not necessary to partition it into cells. References@1,2# have
explained how the probabilitiesP(V t), needed in the ther-
modynamic formalism, can be constructed from the tran
tion probabilities in the elementary Markov processes~this
will be exemplified in Sec. II!.

The thermodynamic formalism will be applied to the di
tribution P(V t), whereV t replaces the previous subscripti .
The partition function reads nowZ(b,t)5(V t

Pb(V t). Note

that eachV t is counted with equal weight, i.e., the calcul
tion does not requirea priori knowledge of the invariant
measure. The free energy is now defined
c(b)5 limt→` (1/t) lnZ(b). In this context, it is calledRuelle
pressureor topological pressure. It contains information
about the dynamics of the system, which can be extrac
again by varying the control parameterb. For example, for
an open system, the escape rateg is such thatc(1)52g
andc~b! vanishes whenb is equal to the fractal dimensio
dH of the repeller~set of trajectories that never escape!. The
partition functionZ(b,t) may be exponentially decreasin
(b.dH) or exponentially increasing (b,dH). For closed
systems, we havedH51 and for open systemsdH,1.

It has been found already in a more general frame t
some nonanalyticity of the Ruelle pressure may occur at
tain b values@4,6,5,7#. They are called phase transitions,
analogy with thermodynamics.

In this paper we study the influence of disorder on t
structure of the Ruelle pressure. We have applied the t
modynamic formalism to systems with static disorder a
have found very peculiar features@8#. In the limit of infinite
systems and for almost allb values, the Ruelle pressure b
comes completely determined by trajectories localized

ss:
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56 5107CHAOS PROPERTIES AND LOCALIZATION IN . . .
rare fluctuations of the disorder. The global structure of
disorder, in particular, the density of impurities, becom
irrelevant. Depending onb, the relevant trajectories are no
always localized onto the same type of fluctuations. T
crossovers between the different localization regimes
characterized by nonanalytical points in the Ruelle press

For finite but large systems, the Ruelle pressure is ag
analytic. However, for mostb’s it is still dominated by lo-
calized trajectories. Delocalized trajectories become relev
only in some limitedb regions that shrink to points as th
system size tends to infinity.

To be more precise, we have developed these idea
studying a particular model, theLorentz lattice gas~LLG!. A
Lorentz gas consists of a moving light particle scatte
among fixed heavy particles. It may be considered a
simple model for diffusion, electric conductivity, or flow in
side a porous medium. In the past it has been success
used to study the connection between the irreversible be
ior of fluids and their chaotic properties at a microsco
level. For example, Gaspard and Nicolis@9# have shown that
for an open system, the diffusion coefficient can be
pressed in terms of the Kolmogorov-Sinai entropy and
sum of the positive Lyapunov exponents for nonescap
trajectories. The name Lorentz lattice gas is used when
light particle is, for reasons of simplicity, constrained
move on a~cubic! lattice, with scatterers located at the nod
or sites.

The localization processes occurring when the thermo
namic formalism is applied to such a system have been
cussed already in an extensive theoretical analysis@10#. The
present paper contains the numerical counterpart and dem
strates the validity of our analytical results. It clarifies t
mechanism of localization in large systems by explicitly c
culating the topological pressure for specific nonrandom c
figurations in Sec. III. In Sec. IV an exact expression for t
Hausdorff dimension of the repeller is obtained for an op
LLG. Moreover, numerical studies allow us to find a go
estimate for the Ruelle pressure for large but finite syste
in Sec. VIII. As an intermediate result, the distribution f
the largest cluster of scatterers in random configurati
~Sec. VII! is estimated theoretically and measured throu
numerical simulations. We conclude in Sec. IX.

II. THERMODYNAMIC FORMALISM

First we give a more precise definition of our model.
number of N fixed scatterers are randomly placed with
probabilityr on theL sites of a finite one-dimensional lattic
D, having either periodic or absorbing boundaries. The p
ence of a scatterer at siter5$1,2,...,L% is indicated by the
Boolean variabler̂(r ), equal to 1~0! if the siter is occupied
~empty!, with ^r̂&5r5N/L.

A light particle, moving on the lattice, is specified at tim
t (t50,1,2,...) by astatext5$r t ,ci t%, where its positionr is
a site on the lattice and its velocityci561 connects siter t to
one of its nearest neighbors. Letf(x,t)5f i(r ,t) be the
probability of finding the moving particle in statex5$r ,ci%.

The time evolution of the particle from timet to t11
consists of a possible collision followed by propagation. T
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collision is defined by the following rules. If there is n
scatterer atr t , then the particle moves ballistically, i.e
r t115r t1ci . This is expressed in terms off i as

f i~r1ci ,t11!5f i~r ,t !. ~1!

If there is a scatterer atr t , i.e., if r̂(r t)51, then the velocity
of the particle is reversed with probabilityq (ci t8 52ci t) or
left unchanged with probabilityp (ci t8 5ci t), with p1q51.
In the propagation step the particle moves over one lat
distance in the direction of its post-collision velocity, i.e
r t115r t1ci t8 . Then it hops from one site to the next one
the direction of its velocityci . Again, the corresponding
evolution off i is given by

f i~r1ci ,t11!5af i~r ,t !1bf2 i~r ,t !, ~2!

with a5p andb5q512p ~the reason for this notation wil
become clear later!. More generally, we define site
dependent transition probabilities

â~r !5ar̂~r !112 r̂~r !,

b̂~r !5br̂~r !. ~3!

They depend on the precise configuration of scatterers u
consideration.

The probabilityf(x,t) evolves with time according to a
Chapman-Kolmogorov~CK! equation with site-dependen
transition probabilities, obtained by combining Eqs.~1! and
~2!:

f i~r1ci ,t11!5â~r !f i~r ,t !1b̂~r !f2 i~r ,t !, ~4!

and more formally

f~x,t11!5(
y

w~xuy!f~y,t !. ~5!

The transition matrixw(xuy) represents the probability o
going from statey5$r 8,cj% to statex5$r ,ci% and is given by

w~xuy!5d~r2ci ,r 8!@d i j â~r 8!1d i , j 11b̂~r 8!#. ~6!

In the case of absorbing boundaries~open system!, boundary
statesy5$r 8,cj%5$1,1% and $L,2% referring to a particle
entering the domainD are excluded from they summation.
This is equivalent to imposing the absorbing boundary c
ditions ~ABC!

f1~1,t !5f2~L,t !50. ~7!

In the case of periodic boundaries~closed system!, we im-
pose the periodic boundary conditions~PBC!

f i~r1L,t !5f i~r ,t !. ~8!

The transition matrix satisfies the normalization relatio

(
x

w~xuy!51 ~closed!

<1 ~open!. ~9!

The inequality sign in Eq.~9! for opensystems refers to the
case wherey5$r ,ci% denotes a state at a boundary siter with
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5108 56C. APPERT AND M. H. ERNST
nonentering velocity~boundary states with entering veloci
do not occur!. Indeed, the sum overx excludes states wher
the particle has escaped from the domainD. Hence the prob-
ability for remaining inside the domain decreases when
particle finds itself on a boundary site.

The special caser51 is called a persistent random wa
~PRW! whereâ(r )5p andb̂(r )5q for all r . Then the mov-
ing particle simply undergoes a random walk with correla
jumps.

For later analysis it is convenient to also have a differ
representation of the CK equation. It can be obtained
eliminating the probabilitiesf i(r ,t) at nonscattering site
with the help of Eq.~1!. Let r l ( l 51,2,...,N) be the position
of the l th scatterer andRl5r l 112r l the free interval be-
tween scatterers. For ABC we define in additionR05r 121
andRN5L2r N . Then it is straightforward to show that th
scattering amplitudesUi( l ,t)5f i(r l ,t) ~probability at scat-
tering siter l! satisfy the closed set of equations

U1~ l 11,t1Rl !5aU1~ l ,t !1bU2~ l ,t !,

U2~ l 21,t1Rl 21!5bU1~ l ,t !1aU2~ l ,t !, ~10!

with the boundary conditions

Ui~N1 l ,t !5Ui~ l ,t ! ~PBC!,

U1~1,t !5U2~N,t !50 ~ABC!. ~11!

Note that Eq.~10! depends only on the set ofrandominter-
vals $Rl u l 50,1,2,...,N% ~the coefficientsa5p andb5q are
surevariables!, whereas the CK equation~4! depends on the
set of random transition rates$â(r ),b̂(r )ur51,2,...,L%. It
will appear below that the basic chaos properties can be
pressed in terms of the largest eigenvalueL and the corre-
sponding left and right eigenvectorsv(x)5v i(r ) and
u(x)5ui(r ) of the nonsymmetric matrixw appearing in the
CK equation~5!:

wu5Lu, vw5Lv. ~12!

Then, any solutionf(x,t) of the CK equation approache
L tu(x) for t→`. For our purpose it is again more conv
nient to deal with Eq.~10! and determine only the compo
nents Ui( l ) of eigenvectors at the scattering sites, i.
Ui( l ,t)5L tUi( l ) and the eigenvalue equation follows fro
Eq. ~10!, i.e.,

LRlU1~ l 11!5aU1~ l !1bU2~ l !,
~13!

LRl 21U2~ l 21!5bU1~ l !1aU2~ l !,

where the componentsUi( l ) satisfy the boundary condition
~11!.

To describe the thermodynamic formalism we introduc
dynamical phase space consisting of all possible seque
V t5$x1 ,x2 ,...,xt%, which represent an allowed sequen
~i.e., in the ABC case, nonescaping from domainD! of the
moving particle visiting the statext5$r t ,ct% at thetth time
step. The probabilityP(V tux0) on V t , given that the moving
particle is inx0 at t50, is given by the multitime distribu-
tion function
e

d

t
y

x-

,

a
es

P~V tux0!5Pt50
t21 w~xt11uxt! ~14!

on account of the CK equation~5!.
The dynamic partition function is then introduced as

sum over stateV t in this dynamical phase space

Z~b,tux0!5(
V t

@P~V tux0!#b

5 (
x1•••xt

Pt50
t21 w~b;xt11uxt!

5(
y

wt~b;yux0!. ~15!

In analogy with the methods of equilibrium statistical m
chanics, there is an inverse temperaturelike variableb, which
allows one to scan the structure of the probability distrib
tion for V. In the second line of Eq.~15! we have introduced
the pseudotransfer matrix as

w~b;xuy!5@w~xuy!#b ~16!

andwt(b) denotes thetth power of matrixw(b). The larg-
est eigenvalueL~b! and corresponding left and right eigen
vectorsv(b,x) andu(b,x) of w(b;xuy) are defined analo-
gously to Eq.~12!, wherea andb in Eqs.~2!–~13! take the
values

a5pb, b5qb. ~17!

As the system is ergodic@11#, Z(b,tux0) does not depend
on the initial conditionx0 in the long-time limit, for almost
all configurations of scatterers. We already mentioned t
Z(b,tux0) vanishes for open systems as time tends to in
ity. More precisely, for large times, the sum~15! is domi-
nated by the largest eigenvalueL~b! of the pseudo transfe
matrix w(b;xuy), which is nondegenerate for ergodic sy
tems. More explicitly, we use the spectral decomposition
wt(b), i.e.,

wt~b;xuy!5v~b,x!@L~b!# tu~b,y!

1 (
nÞ0

vn~b,x!@Ln~b!# tun~b,y!, ~18!

where Ln,L for all nÞ0. Thus the second term decay
exponentially faster than the first one and we obtain for la
t

Z~b,tux0!.@L~b!# t(
y

v~b,y!u~b,x0!. ~19!

It should be noted that the partition function depends on
configuration of scatterers under consideration.

The Ruelle or topological pressurec~b,r! is defined as the
infinite-time limit of the logarithm ofZ per unit time step, in
a way similar to the definition of the free energy per partic
in the canonical ensemble in the thermodynamic limit, i.e

c~b,r!5 lim
t→`

1

t
^ lnZ~b,tux0!&r , ~20!
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56 5109CHAOS PROPERTIES AND LOCALIZATION IN . . .
where^ &r indicates an ensemble average not only over
initial conditions, but also over all realizations of the diso
der, i.e., all configurations of scatterers. Again, it can
expressed in terms of the largest eigenvalue of the ma
w(b) as

c~b,r!5^ lnL~b!&r , ~21!

where we have taken the infinite-time limit inside the co
figurational average.

For some specificb values, the Ruelle pressure has
explicit physical meaning: ThepositiveLyapunov exponent
is l52c8(1); the escape rate for open systems
g52c(1); the Kolmogorov-Sinai entropyhKS follows
from the generalization of Pesin’s theorem and yie
hKS5c(1)2c8(1); the topological entropyhT satisfies
hT5c(0); and theHausdorff dimensiondH of the repeller
~the set of trajectories that never escape! for an open system
is the zero-point of the Ruelle pressure, i.e.,c(dH)50. A
prime in the above formulas denotes ab derivative.

For an open system, the transition matrixw is not stochas-
tic, i.e., its largest eigenvalue is strictly smaller than o
Due to the loss of trajectories at each time step, the eig
vectors forb51 decay according to

wu5exp~2g!u, vw5exp~2g!v. ~22!

In order to obtain the invariant vectorp, the eigenvectors
have to be rescaled at each time step, as explained in
@1#. A new transition matrixP is defined as

P~xuy!5exp~g!w~xuy!
v~x!

v~y!
. ~23!

This matrix is stochastic, i.e., its largest eigenvalue is eq
to 1 and is associated with a left eigenvectorx(x)51, as can
be seen from

(
x

x~x!P~xuy!5(
x

P~xuy!51. ~24!

The corresponding right eigenvector is the invariant vect

p~x!5
v~x!u~x!

^uuv&
, ~25!

where it can be verified that

(
y

P~xuy!p~y!5p~x!. ~26!

With definition ~25!, p is normalized. The invariant vectorp
gives the probability of finding the particle on a given s
and with a given velocityprovided it has not escaped afte
infinite time.

III. CHAOS PROPERTIES OF SPECIAL
CONFIGURATIONS

A. Mean-field configurations

In the subsequent subsections we develop a theore
understanding of some typical properties of configurations
ll

e
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s

.
n-

ef.

al

al
f

scatterers, which are relevant for describing the dynamic p
tition function and Ruelle pressure in large systems. T
will be done by a theoretical analysis of the largest eig
value of a number of relevant configurations. First we d
cuss in this section mean-field-type configurations, relev
for b close to unity, as discussed in Ref.@12#. Here the
fluctuationsin the lengths of the interval between scattere
are small. In Secs. III B and III C we study configuration
with an increasing number ofsolid clusters of scatterers~re-
gions of densityr51!, separated by regions free of scatte
ers~voids!, as illustrated in Fig. 1. This is helpful in order t
understand the mechanism of localization. Large voids h
the tendency to divide the system in independent subsyst
with a higher density of scatterers. We will show that on
the subsystem containing the largest cluster is relevant
determining the dynamic partition function.

We start by considering periodic arrays of scatterers w
a constant free intervalRl5R for l 51,2,...,N, which corre-
sponds to a PRW on an ordered lattice with lattice dista
R. The eigenvalue equation~13! can be solved by making
the ansatzUi( l )5Ai exp(ıkl). By setting the resulting secu
lar determinant in Eq.~13! equal to zero, one finds for th
largest eigenvalueL

@L~b!#R5a cosk1@b22a2sin2k#1/2

.~a1b!H 12
a

2b
k21•••J ~k small!. ~27!

The wave numberk has to be determined from the bounda
conditions~PBC or ABC!. In the PBC case the allowedk
vectors follow from Ui( l 1N)5Ui( l ), so thatk52pn/N
with n50,61,62,... . Consequently, the wave numb
k50 yields the largest eigenvalue@L(b)#R5a1b.

Next consider the open system, with ABC
@U1(1)5U2(N)50#. The eigenvectorUi( l ) is a special
linear combination of exp(ıkl) and exp(2ıkl), i.e.,

U1~ l !5A sink~ l 21!,

U2~ l !5B sink~N2 l !. ~28!

To determine the allowedk value we substitute Eq.~28! into
Eqs. ~13!, taking l 51 for the first one andl 5N for the
second one. This yields

FIG. 1. Three examples of configurations withN scatterers on a
lattice of sizeL: ~a! mean-field configuration,~b! one solid cluster,
and~c! two solid clusters of sizeM andM̄5N2M . Above~below!
each line of sites we indicate the labeling of sites~scatterers!.
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5110 56C. APPERT AND M. H. ERNST
LRA sink5bB sink~N21!,

LRB sink5bA sink~N21!. ~29!

The ratio of the two equations yieldsA56B. As the com-
ponents~28! of the largest eigenvector of the positive matr
w(b) need to be positive~they represent probability dens
ties!, it follows that A5B51. Substituting expressions~28!
into the first of Eqs.~13! with l 52 and using Eq.~29! to
eliminateLR from the left-hand side, we obtain a transce
dental equation for the wave numberk,

a sink5b sin~kN!, ~30!

valid for N51,2,... with ABCs. Forlarge N, the smallest
root of this equation is close tok.p/N; so we set
kN5p2dk such that sin(kN)5sin(kd) and find for smallk
that d.a/b. This yields for the ABC case the smallest a
lowed wave number

k5
p

N1d
.

p

N1a/b
~31!

and the largest eigenvalue

@L~b!#R5~a1b!H 12
a

2b S p

N1a/bD 2

1O~N24!J .

~32!

From the summary below Eq.~21!, all chaos quantities for
periodic arrays of scatterers with ABC can be calcula
from Eq.~32!. Themean-field theoryfor the LLG, discussed
in @12#, follows from this result by settingR equal to the
average free interval length~mean free path! R5L/N51/r
and the resulting Ruelle pressure follows from Eqs.~21! and
~32! as

cRW~b,r!5r ln~a1b!2
a

2br S p

L1a/~br! D
2

1O~L24!

~33!

as obtained in@12#. We recall here thata5pb andb5qb.

B. PBC configurations with a void

An analysis of the eigenvalueL~b! for a configuration
with a singlevoid of width R ~i.e., R21 empty sites! in the
PBC and ABC cases@see Fig. 1~b!# provides essential in
sights for dealing with more complex distribution of scatte
ers. In this section, PBC are treated; in the following secti
ABC are treated.

We start with a perturbative calculation for largeR. Re-
call that the Hausdorff dimensiondH of the repeller is de-
fined throughc(dH)5 lnL(dH)50 and consider firstb,dH ,
so thatL(b).1. The position of the leftmost scatterer of th
cluster is chosen as site number 1. Equations~13! for the
scattering amplitudes read in this case

LRU1~1!5aU1~N!1eb@U2~N!/e#,

LU2~1!5bU1~2!1aU2~2!,

LU1~2!5ea@U1~1!/e#1bU2~1!,
-

d

-
,

LU2~2!5bU1~3!1aU2~3!,

A

LU2~N21!5bU1~N!1ea@U2~N!/e#,

LU1~N!5aU1~N21!1bU2~N21!,

LRU2~N!5eb@U1~1!/e#1aU2~1!, ~34!

where thee(1/e) factor has been introduced to clearly di
play the structure of the following perturbative calculatio
For a large void of lengthR the solution of Eq.~34! for a
configuration in aclosedsystem of lengthL5N1R21 is
expected to look like that for anopensystem of lengthN
with N scatterers, studied in Sec. III A. This can be inferr
from the first and last of Eqs.~34!, wheree[L12R is a small
quantity for largeR: The eigenvector componentsU1(1)
andU2(N), corresponding to ‘‘entering’’ velocities, are ex
pected to be linear ine. In a perturbation expansion in pow
ers ofe, the componentsU1(1) andU2(N) arevanishingto
dominant order ine, corresponding to absorbing bounda
conditions. The first and last of Eqs.~34! can be considered
as new boundary conditionsreplacing Eq.~11! and the re-
maining 2(N21) equations can be written in matrix form a

LU5W0U1eD~U/e!, ~35!

whereW0( l ,i u l 8, j ) is the matrix representation of Eq.~13!
with Rl5Rl 2151 for the ABC case. Inspection of Eq.~34!
shows that the perturbation matrixD has the form

D~ l ,i u l 8, j !5ad~ l ,2!d~ i ,1 !d~ l 8,1!d~ j ,1 !

1ad~ l ,N21!d~ i ,2 !d~ l 8,N!d~ j ,2 !,

~36!

whered( l ,l 8) is a Kronecker delta. The eigenvalue equati
~35! can be solved by a perturbation expansion around
solutions $L0 ,Ul

0% of the open system, discussed in Se
III A, i.e., L5L01eL11••• and Ui5Ui

01eUi
11••• ,

yielding the equations ofO(1) andO(e),

~L02W0!U050,

~L02W0!U11L1U05DU1, ~37!

whereas the new boundary conditions follow from the fi
and last of Eqs.~34!,

L0U1
1 ~1!5aU

1
~N!, L0U2

1 ~N!5aU2
0 ~1!. ~38!

HereL0 andUi
0( l ) are explicitly given in Eqs.~32! and~28!

with A5B51. To solve theO(e) equations in Eqs.~37!, we
need the left eigenvector Vi

0( l ) defined through
V0W05L0V0. Using the symmetries in the explicit form o
the 2(N21)-dimensional matrixW0, it is straightforward to
relate the components of the left and right eigenvect
V6

0 ( l ) andU6
0 ( l ), respectively, with the result
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V1
0 ~ l !5U2

0 ~ l 21!5sink0~N2 l 11!,

V2
0 ~ l !5U1

0 ~ l 11!5sink0l , ~39!

wherek05p/(N1a/b) as given in Eq.~31!. The eigenvalue
in first order follows from Eq.~37! by taking the inner prod-
uct of Eq.~37! with V0, yielding

eL15e
^V0uDuU1&

^V0uU0&
.

2

p S a

bD 2

~a1b!22Rk0
3 ~N→`!,

~40!

where inner products are defined by

^XuY&5(
l

(
i 561

Xi~ l !Yi~ l !. ~41!

Here the numerator and denominator have been calcul
from Eqs.~28!, ~36!, ~38!, and~39! with the result

^V0uDuU1&5aV1
0 ~2!U1

1 ~1!1aV2
0 ~N21!U2

1 ~N!2a2

3@sink0~N21!#2/L0

.2~a2/b2!~a1b!k0
2,

~42!

^V0uU0&5cotk0sink0N2N cosk0N.N1a/b5p/k0 .

We conclude that the largest eigenvalueL~b! and corre-
sponding Ruelle pressurec(b)5 lnL(b) in a PBC configu-
ration with N scatterers and a void of lengthR decay expo-
nentially with a correlation lengthj51/ln(a1b) to the
eigenvalue of a solid cluster ofN scatterers with ABCs.

In Appendix A we present a detailed calculation, exact
all R (R51,2,...). It yields for the largest eigenvalue

L~k!5~a1b!$12~a/2b!k21•••%, ~43!

where

k5k15pY H N1
a

b F11~a1b!12R

12~a1b!12RG J . ~44!

A plot of L(k1) is shown in Fig. 2. Thee expansion of this
result, withe5(a1b)12R, agrees with the perturbation re
sult ~40!. ForR51 ~no empty sites!, the resulting wave num
ber reduces tok150, as it should for a closed system. Agai
Eq. ~44! shows thatk and L(k) decay within a correlation
length j51/ln(a1b) towards the corresponding valuesk0
and L0(k0) of an open system with a solid cluster ofN
scatterers. Equations~43! and ~44! allow us to calculate all
chaos properties of the configuration in Fig. 1~b! with the
help of Eq.~21!.

C. ABC configurations with a void

We consider an open system with two solid clusters@see
Fig. 1~c!# with, respectively,M and M̄5N2M scatterers,
separated by a void of lengthR, and study the eigenvalu
problem for b,dH so that L(b).1. We expect that for
sufficiently largeR the M and M̄ blocks become indepen
dent and the componentsU2(M ) and Ū1(M11) of the
eigenvector, corresponding to entering velocities, are sm
ed

r

ll

and can be treated as new ABC in a perturbation calculat
We therefore write the eigenvalue equation~13! as a set of
2(M1M̄24) coupled equations for the scattering amp
tudes $Ui( l )uŪ i( l )% with ( l ,i )P$12,21,22,...,(M
21)2,M 1u(M11)2,(M12)1,...,(N21)1,(N21)2,N1%
of the general form

LS U

Ū D5S W0 0

0 W̄0D S U

Ū D1eDS U/e

Ū/e D , ~45!

with ‘‘absorbing’’ boundary conditions for theM and M̄
blocks in the form

U1~1!50,

LRU2~M !5eb@Ū1~M11!/e#1aŪ2~M11!,

LRŪ1~M11!5aU1~M !1eb@U2~M !/e#,

Ū2~N!50. ~46!

The block matricesW0(M ) and W̄0(M̄ ) refer, respectively,
to theM andM̄ clusters and have the same form asW0(N)
for the N cluster in Eq.~36!. The matrix D connects the
block matrices to the entering statesU2(M ) and
Ū1(M11),

D~ l i u l 8 j !5ad~ l ,M21!d~ i ,2 !d~ l 8,M !d~ j ,2 !

1ad~ l ,M12!d~ i ,1 !d~ l 8,M11!d~ j ,1 !.

~47!

The boundary conditions~46! couple the two blocks. Thes
boundary equations show thatU2(M ) and M̄ 1(M11) for
large R can indeed be treated as small quantities of or
e5L12R, as in Sec. III B.

FIG. 2. EigenvalueL~b! at b50, for a configuration with only
one void containingR21 empty sites and PBC, as a function ofR.
The upper~lower! curves correspond to the numerical results
N520 (N510); crosses~circles! give the prediction based on Eqs
~43! and ~44!; horizontal lines indicate the exact eigenvalu
L0(b50) for a PRW on a lattice of sizeL85N with ABC. For
b50, j51/ln 2.1.4 is the correlation length.
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5112 56C. APPERT AND M. H. ERNST
The analysis of this problem is similar to that in Se
III B. The eigenvalue equation~45! can be solved by an ex
pansion in powers ofe.

The eigenvalue problem tozerothorder in e reduces to
two decoupled equations for the two isolatedM andM̄ clus-
ters with ABC, reading

L0S U0

Ū0D5S W0 0

0 W̄0D S U0

Ū0D . ~48!

For sufficiently largeM andM̄ the largest eigenvalues of th
block matrices areL0(k0) andL0( k̄0) @see Eq.~43!#. These
are also eigenvalues for the whole system~48! with right and
left eigenvectors:

$U0~k0!u0%, $V0~k0!u0% with k05p/@M1a/b#,

$0uŪ0~ k̄0!%, $0uV̄0~ k̄0!% with k̄05p/@M̄1a/b#.
~49!

The right and left eigenvectors in Eqs.~49! are again given
by Eqs.~28! and~39! with N replaced byM andM̄ , respec-
tively. If M.M̄ , thenL(k0).L( k̄0) andL0[L(k0) is the
largest eigenvalue with the corresponding eigenvec
$U0(k0)uŪ0(k0)[0% and$V0(k0)uV̄0(k0)[0%.

To linear order ine, the boundary conditions~46! require
for the components$U1(k0)uŪ1(k0)%

U1
1 ~1!50,

U2
1 ~M !5aŪ2

0 ~M11!/L050,

Ū1
1 ~M11!5aU1

0 ~M !/L0 ,

Ū2
1 ~N!50. ~50!

The last equality on the second line follows as all comp
nents of Ū0(k0) are vanishing. First-order perturbatio
theory for the largest eigenvalue yields

eL15e^V0uDuU1&50 ~51!

as a consequence of Eqs.~50!.
Second-order perturbation theory yields a nonvanish

result, proportional toe2.(a1b)222R. Therefore, the larg-
est eigenvalue for the configuration of Fig. 1~c! as a function
of the width of the voidR has the form

L~R!.L01const3e2~R21!/j, ~52!

with a correlation lengthj5@2 ln(a1b)#21, a factor 2
smaller than in Sec. III B.

In an ABC configuration with two clusters containingM
and M̄ scatterers, respectively, and separated by a dista
R, the largest eigenvalueL approaches the eigenvalu
L0[L(k0) given by Eqs.~43! and ~44! at an exponentia
rate. ThisL(k0) is solely determined by thelargestcluster.
The plot in Fig. 3 shows the numerical solution of the eige
value problem.

The main conclusions of the previous subsections, re
ring to b,dH , can be directly generalized to configuratio
.

rs

-

g

ce

-

r-

with more clusters: ~i! The largest eigenvalueL~b! in a
PBC configuration~closed system! with at least one void
larger thanj is equal to the largest eigenvalue for the cor
sponding ABC configuration~open system! and ~ii ! in any
ABC or PBC configuration with clusters separated by d
tancesRl.j ( l 50,1,...,N) the largest eigenvalue isL(k0)
given by Eq.~43!, with k05p/@Mmax1a/b#, whereMmax is
the number of scatterers in the largest solid cluster. In f
we will use case~ii ! to illustrate the localization proces
mentioned in the Introduction. In Sec. II we have seen t
the largest eigenvalueL~b! of the matrixw(b) was domi-
nating the dynamic partition functionZ(b,tux0) at long
times and thus the Ruelle pressure@Eqs.~19! and ~20!#. On
the other hand, we just found that, forb,dH , L~b! is de-
termined by the largest cluster of the configuration, as if t
cluster was isolated and surrounded by absorbing bou
aries. It means that the trajectories that dominate in sum~15!
are those that always remain localized inside the largest c
ter. The other trajectories traveling throughout the syst
may be omitted as well. Thus the Ruelle pressure in la
systems will not reflect the global structure of the system
only characterize the largest cluster present in the config
tion. It is precisely this phenomenon that will be referred
as localization. This can be illustrated by calculating the
variant vector~see Fig. 4!. Only the states corresponding t
positive velocities are plotted here. States with negative
locities give the same result, up to a translation

p2~r !^uuv&5u2~r !v2~r !5v1~r 11!u1~r 11!

5p1~r !^uuv&. ~53!

After an infinite time, all the probability of finding the par
ticle is concentrated on the largest eigenvector.

To get some insight into how the Ruelle pressure var
with the configuration of scatterers, we may compare
largest eigenvaluesL~b! obtained for each of the three con
figurations of Fig. 1, keeping afixed density r5N/L
5(M1M̄ )/L. The eigenvalues are, respectively,

FIG. 3. EigenvalueL~b! at b50, for a configuration with two
clusters of sizes 50 and 30, separated by a void of sizeR and
ABC. The horizontal line indicates the exact eigenval
L0(b50)51.996 20 . . . calculated from Eqs.~43! and ~44!,
for a PRW on a lattice of size L550 with ABC.
j(b50)51/@2ln2#.0.7 is a theoretical estimate for the correlatio
length, in good agreement with the numerical results.
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La5~a1b!rS 12
a

2b
kN

2 D r

,

Lb5~a1b!S 12
a

2b
kN

2 D ,

Lc5~a1b!S 12
a

2b
kM

2 D . ~54!

As r,1 andb,dH , i.e., a1b.1, it is straightforward to
show that

La,Lc,Lb . ~55!

The largest eigenvalue is obtained when all scatterers
packed together in one solid cluster, while the smallest c
responds to the mean-field configuration, where no cluste
formed and thus localization is not possible. In Sec. V it w
appear that the largest eigenvalue of any other configura
falls betweenLa and Lb . We will show that, for largeL,
most configurations contain a largest cluster that will entir
determine the Ruelle pressure. Indeed, as we start to see
the configuration in Fig. 1~c!, localization is not specific to
very special configurations, but occurs more generally
most configurations.

Finally, we stress that, in this section, only the ca
b,dH was considered. Forb@1, a complementary phenom
enon occurs, i.e., localization in the largest void instead
largest cluster@10#.

IV. HAUSDORFF DIMENSION

The eigenvalue equation in representation~13! and the
result of Sec. III A enable us to carry out an exact calculat
of the Hausdorff dimensiondH for an open LLG, which is
defined as the root ofc(b5dH)50 or, equivalently, as the
root of L(b5dH)51 on account of Eq.~21!. For a closed
LLG there is no fractal repeller anddH51.

The important observation is thatdH is independent of the
quenched disorderand depends only on the total number
scatterers. This can be seen by combining Eq.~13! with the
requirementL(b)51. The random variables$Rl% disappear
from the equation, so thatdH is the same as for the PRW i

FIG. 4. Invariant vectorp1(r )5u1(r )v1(r ). The location of
the two clusters has been indicated with dashed lines.
re
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Sec. III A. It can be calculated by setting the right-hand s
of Eq. ~32! equal to unity and solving forb. For largeN ~i.e.,
small k!, the root is

b5dH512S p

2ql0
D S p

N1a/bD 2

1O~N24!

512
D

lclosed
S p

L1a/br D 2

1O~L24!,

~56!

where D5p/2rq is the exact diffusion coefficient of the
one-dimensional LLG@13# and lclosed5rl052r(p ln p
1q ln q) is the exact Lyapunov exponent for a closed LL
as obtained in@12,2#.

V. NUMERICAL METHOD

The remaining part of this paper describes the numer
diagnostics in which numerical and analytical results will
compared. In this section we start with a description of
numerical method used to calculate the largest eigenvalu
the large random matrixw(b;xuy) in Eq. ~6! for a fixed
configuration of scatterers characterized by a certain sys
sizeL and number of scatterersN. Then the Ruelle pressur
is obtained as the logarithm of this eigenvalue@Eq. ~21!#.

In one dimension, a recurrence formula can be found t
allows us to compute numerically the exact value of the
terminant ofw(b)2L1, where1 is the identity matrix. Then
L can be determined as the largest root of the equa
detuw(b)2L1u50, using Newton’s method. The recurren
formula is derived in Appendix B. This method can be a
plied provided thatL is not too large~less than 400!. Indeed,
if the system size is larger, numerical overflow problem
occur.

For large system sizes (L.400) and forbÞ1, the calcu-
lation of the determinant involves very large numbers t
cannot be handled by workstations. Under such circu
stances,L has been determined by using Arnoldi’s alg
rithm, which is an iterative method akin to Lanczos alg
rithm @14#. Let w be an n3n matrix whose largest
eigenvalue has to be determined. The idea is to scan rap
the eigenvector space and find a subspaceU containing them
most significant eigenvectors. Then we compute anm3m
matrix H as a kind of projection ofw onto the subspaceU.
The largest eigenvalueLH of H associated with the eigen
vectoruH yields an approximation for the largest eigenval
of w andUuH for the corresponding eigenvector. If the resu
is not satisfactory, the whole process is repeated, takingUuH
as an initial guess. The method is explained in more deta
Appendix C. The sizem of the basis has to be tuned in ord
to optimize the efficiency of the method.

VI. RANDOM CONFIGURATIONS

In this section we will illustrate that localization occu
not only in the special configurations considered in Sec.
but in the majority of random configurations realized in lar
systems. To show this we generate some random config
tions of a lattice ofL5100 sites with a filling fraction
r50.3, as shown in Fig. 5, and calculate the largest eig
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5114 56C. APPERT AND M. H. ERNST
value L~b! and corresponding Ruelle pressurec(b)
5 lnL(b) numerically. We further determine the sizeM of
the largest cluster in each configuration and calculate
largest eigenvalueL(b;kM) for an isolatedM cluster, using
Eqs. ~43! and ~44! with kM5p/@M1a/b#. The results are
displayed in Table I. For comparison, the mean-field va
for the system sizeL and number of scatterersN5rL is
calculated from Eq. ~32! and yields, for b50,
cMF(0)50.2078 for ABCs, andcMF(0)50.2079 for PBC
@wherek50 in Eq. ~27!#.

The Ruelle pressure lnL~b! is in fairly good agreemen
with the estimate lnL(b;kM) for the three first configuration
~a!–~c! ~see Table I!, i.e., as soon as the largest cluster s
M is on the order of five sites. In other words, the dynam
partition function ~15! and Ruelle pressure~20! calculated
from the subset of trajectoriesV t that remain on the larges
cluster for all time give already a fair approximation to t
actual Ruelle pressure defined by summing in Eqs.~15! and
~20! over all trajectoriesV t that stay inside the domainD for
all time. This means that there is already a large degre
localization in configurations~a!–~c! and, to a lesser exten
in ~d!, but not in~e!, in spite of the small system sizeL5100
and numberN5rL530 of scatterers.

On the other hand, if there is no large cluster@as in con-
figuration ~e!, whereM<2#, then L(b;kM) is not a good
estimate at all. The mean-field value is slightly better,
still is a poor estimate, as there are large fluctuations in
distances between the scatterers.

A. Bounds on Ruelle pressure

In @8,10# it has been shown that the Ruelle pressure
bounded by

FIG. 5. Random configurations obtained forL5100 andr50.3.
The largest cluster is of size~a! 6, ~b! 5, ~c! 5, ~d! 4, and~e! 2. The
shaded areas represent the location of the scatterers on the la

TABLE I. For the random configurations of Fig. 5, withL5100
and r50.3, we compare the actual Ruelle pressurec~b! with the
estimate lnL(b;kM) based on the largest cluster sizeM , for b50.
PBC are used for configurations~a!–~c! and ABC for ~d! and ~e!.
The corresponding mean-field valuescMF(0)50.2079~PBC! and
cMF(0)50.2078~ABC! do not provide a sensible estimate.

Configuration Ruelle pressure M Estimate

~a! 0.59532 6 0.589
~b! 0.56275 5 0.549
~c! 0.55034 5 0.549
~d! 0.50916 4 0.481
~e! 0.35389 2 0.000
e

e

e
c

of

t
e

s

ln L~kM !. ln~a1b!2
a

2b
p2/M2

<cL~b,r!< ln~a1b! ~b,1!,
~57!

b~ lnq!1/M̄<cL~b,r!<0 ~b.1!,

whereM is the size of the largest cluster andM̄ that of the
largest void. The upper bound is a direct consequence f
the inequalities

a1b.1 if b,1, ~58!

a1b,1 if b.1, ~59!

and we refer to@8,10# for more details. Forb,1 (b.1) the
lower bound is the Ruelle pressure obtained by keeping o
the largest cluster~largest void, bordered by two scatterer!
of the configuration and using ABC. In Secs. III B, III C, an
VI, we have found that forb,1, this is not only a lower
bound but also a good estimate for the Ruelle pressure
soon asL is large enough. A consequence is that, among
possible configurations, the configuration withall scatterers
solidly packed in a single cluster gives the maximum va
of the Ruelle pressure. On the other hand, the minim
value is obtained for the mean-field configuration with sc
terers spaced at regular intervals of lengthR51/r.

As a confirmation, we have verified~see Fig. 6! that in a
given set of 1000 configurations, the largest eigenvalue
b,1 did correspond to a configuration where all scatter
are essentially packed together, whereas the lowest v
was obtained for an ‘‘almost mean-field’’ configuration, i.e
the distance between scatterers is more or less constant.
is in agreement with our expectations@10#. To illustrate lo-
calization in these configurations, we have plotted the inv
ant vectorv1(r )u1(r ) as a function ofr ~Figs. 7 and 8!. For
configuration~a!, the eigenvector is entirelylocalizedon the
large cluster on the left. Configuration~b!, which is more of
mean-field type, corresponds more or less to anextended
state. However, there is still partial localization in regions
higher than average density.

VII. DISTRIBUTION OF LARGEST CLUSTER SIZE

Up until now we have studied single configurations. In t
following section we will present results averaged over
disorder and compare them with the upper and lower bou
in Eq. ~57!. To do so, we need to average Eq.~57! over all
possible configurations of scatterers with a fixed densitr
~or a fixedN! and a fixed system sizeL. In order to deter-
mine ^1/M2&r and^1/M̄ &r , we have used three different e
timates for the distribution of the largest cluster siz

ce.

FIG. 6. Among 1000 random configurations generated
L550 andN525, we select the configuration corresponding to t
~a! largest and~b! smallestL value, as determined numerically. Th
shaded areas correspond to the location of scatterers.
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56 5115CHAOS PROPERTIES AND LOCALIZATION IN . . .
Note that the distribution for the size of the largest void
the same, upon exchanging scattering sites and empty si
The first estimate, which is the most crude one, is just t
distribution for havingat leastone cluster of sizeM given by

P1~M !5L
S L2M22

N2M D
S L

ND . ~60!

This expression is valid only for largeM and for periodic
boundary conditions. The numerator in Eq.~60! represents
the number of ways one can distribute theN2M remaining
scatterers among theL2M22 remaining empty sites once a
cluster of sizeM limited by two empty border sites has bee
put in one of theL possible locations. The denominator is th
total number of possible configurations.

FIG. 7. Invariant measurep(x) of Eq. ~25! for configuration~a!
of Fig. 6. A thin line indicates the profile for the location of scat
terers.

FIG. 8. Invariant vector for configuration~b! of Fig. 6. A thin
line indicates the profile for the location of scatterers.
es.
e

The calculation of the distribution of largest cluster siz
can be improved in the following way. LetA(M ) be the
fraction of realizations with no cluster larger thanM . Then

A~M21!5A~M !@12P1~M !#. ~61!

Note that 12P1(M ) is the probability that there isno cluster
of sizeM . This recursion relation can be solved by iterati
starting atM5N, whereA(N)51. The result is

A~M !5Pm5M11
N @12P1~m!#. ~62!

The probability that the largest cluster size isM is then

P2~M !5A~M !2A~M21!5P1~M !Pm5M11
N @12P1~m!#.

~63!

This expression forP2(M ) can be calculated numerically fo
each system size by using the factorial expression gi
above forP1(M ). This is the second expression that w
used for the numerical evaluation of lower bounds. The th
distribution P3(M ) for the largest cluster considered he
was obtained by simply generating a large number of c
figurations and finding the largest cluster for each of them

Figure 9 compares these three estimates for the distr
tion whenr50.4 andL5100. AsP1(M ) is not bounded, it
is cut off such that the probability is normalized. The dist
bution P2(M ) has also to be cut off; otherwise it oscillate
between unphysical positive and negative values at smaM
@but we stress again that formulas~60! and~63! are not valid
for small-M values#. The third distributionP3(M ) has been
averaged over 20 000 configurations.

We now verify that the largest cluster size grows as lnL
for large L. Figure 10 showsP2(M ) for increasing system
sizes. The system size is varied from 100 to 108 and is mul-
tiplied by 10 between each successive estimation. We ch
that each time the sizeL is multiplied by 10, the maximum
of the distribution is shifted to the right by a constant valu
Another verification is made by plotting the second mom
^1/M2&2 calculated with theP2 distribution as a function of
(log10L)22 ~see Fig. 11!.

FIG. 9. Probability distribution for the largest cluster sizeM in
a system of sizeL5100 andr50.4. The dotted, dashed, and sol
lines correspond, respectively, toP1(M ), P2(M ), and the direct
measurementP3(M ) obtained by generating 20 000 random co
figurations.
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5116 56C. APPERT AND M. H. ERNST
As already discussed in@10#, it is possible in the one-
dimensional case forb,1 and L not too large that the
Ruelle pressure is not determined by the largest cluster
by a ‘‘dominant’’ cluster with average densityr1Dr inter-
mediate betweenr and 1. This is indeed what is observed
numerical simulations. Atb50 and for L5100, we have
taken all segments of all lengths, measured the average
sity on each of them, calculated the corresponding Ru
pressure using the mean-field expression~33!, and kept the
one that gives the largest value. We call it the domin
cluster. For some configurations it coincides with the larg
cluster, but not always. Figure 12 compares the distributi
for dominant and largest clusters. They are different, the
one being slightly shifted towards larger values. Note tha
cluster, dominant for a givenb, may not be dominant for
anotherb value. Another illustration of partial localization i
high-density regions instead of solid clusters was given
Fig. 8.

VIII. AVERAGE RUELLE PRESSURE

Now we can use any of the three estimates for the dis
bution to calculate the average~57! over all possible configu-
rations and compare the resulting lower and upper bou

FIG. 10. Probability distributionP2(M ) for the largest cluster
sizeM for r50.4, b50, PBC, and system sizesL increasing geo-
metrically from 100 to 108.

FIG. 11. Scaling properties of the second moment^1/M2&2 ,
calculated from Fig. 10, as a function of 1/(log10L)2 for
L5100– 108, at r50.4 andb50.
ut
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with the numerical measurements of the Ruelle pressure.
fixed L andr, a large number of scatterer configurations h
been generated, and for each of them the largest eigenv
has been calculated. The average of its logarithm yield
numerical value for the Ruelle pressure.

We first consider the case whereb,1. We have collected
data forb50, for which the Ruelle pressure equals the
pological entropy. Figure 13 confirms that numerical data
between the upper and lower bounds. The lower bou
based on any of these three distributions are qualitatively
same.

The estimate for the largest cluster distribution, especia
the one based onP1(M ), may seem rather crude. In fac
most of the system sizes that we are able to explore num
cally are too small for the Ruelle pressure to be entir
dominated by the largest cluster and no improvement of
estimates forP(M ) is likely to make the quantitative agree
ment better.

A more refined prediction for the Ruelle pressure is o

FIG. 12. Probability distribution for the largest~solid line! and
dominant~dashed line! cluster size in a system of sizeL5100, for
r50.4 andb50. These distributions were obtained by generat
20 000 random configurations.

FIG. 13. Ruelle pressurec(b50) ~solid line! for L5100, as a
function of the densityr, compared with upper~dotted line! and
lower bounds~dashed lines!. For comparison, the mean-field pre
diction has also been indicated~dash-dotted line!. A more refined
lower bound based on dominant clusters is also given~dashed line
with circles!.
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tained when the distribution for the largest cluster is repla
by the distribution for dominant clusters, which were defin
in Sec. VII. Then the agreement is very good even on a sm
system such asL5100 ~see Fig. 13!.

However, when the system size is increased (L510 000),
we check, within the precision of our measurements, that
lower bound based on the largest cluster approximatio
indeed a good estimate of the Ruelle pressure~Fig. 14!. It
should be noted that atb50, the Ruelle pressure is indepe
dent ofp andq and thus these results are valid both for lar
or smallq.

One can also verify that for a given system size,
mean-field prediction gives a value much lower than the
erage, whereas the configuration with all scatterers are
idly packed together has a Ruelle pressure almost equ
the upper bound. This is illustrated in Fig. 15 forL5400.
Thus, for a configuration withL5400 and a given density
any value between the two dash-dotted lines of Fig. 15
be realized.

FIG. 14. Ruelle pressurec(b50) ~solid line! for L510 000, as
a function of the densityr, compared with upper~dotted line! and
lower bounds~dashed lines!. For comparison, the mean-field pre
diction has also been indicated~dash-dotted line!.

FIG. 15. Ruelle pressurec(b50) as a function of the densityr
for L5400. The solid line is an average over 10 000 configuratio
The dash-dotted lines are the extreme values obtained for spe
configurations, namely, the mean-field configuration and the
where all scatterers are packed together in a solid cluster. The u
boundc(0)5 ln 2 is also indicated.
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Now we address the caseb.1. Tables II and III give
some numerical values for the measured or estimated Ru
pressure and for the mean-field prediction~33!, in the case of
L5100 andb52. When q is large ~Table II!, the lower
bound is not only a lower bound but also a good estimate
the Ruelle pressure and is much lower than the mean-fi
value. The numerical data are also displayed in Fig. 16.

When q is small ~Table III and Fig. 17!, the situation is
reversed. A good estimate is obtained by using the me
field theory result, while the theoretical lower bound diffe
significantly from the measured Ruelle pressure. We m
roughly estimate under which condition the lower bound w
be a better estimate than the mean-field theory by compa
the corresponding eigenvalues in Eqs.~57! and ~32! with
R51/r,

qb/M̄,~a1b!r, ~64!

or with b5qb,

M̄.
u lnbu

ru ln~a1b!u
. ~65!

If p.q, then for b@1 we havea@b. Localization will
dominate over the mean-field result if

M̄.
u lnbu
ru lnau

5
u lnqu

ru lnpu
, ~66!

i.e., the system sizeL must be typically larger than
exp@(1/r)ln q/ln p#. On the other hand, at fixedL, b must be
larger than

b.11
~ lnq!u ln~12r!u

~p lnp1q lnq!rM
, ~67!

s.
ific
e
er

TABLE II. For p50.2 ~large backscattering probability!, the
Ruelle pressure, evaluated numerically by averaging over 10
configurations, is compared with the lower bound and the me
field value, for different densities of scatterers and a system
L5100.

r
Numerical

value
Lower
bound

Mean
field

0.2 0.02809 0.02851 0.07713
0.5 0.06583 0.06682 0.19283
0.8 0.12211 0.12406 0.30853

TABLE III. For p50.8 ~weak backscattering probability!, the
Ruelle pressure, evaluated numerically by averaging over 10
configurations, is compared with the lower bound and the m
field value, for different densities of scatterers and a system
L5100.

r
Numerical

value
Lower
bound

Mean
field

0.2 0.07218 0.20584 0.07713
0.5 0.17361 0.48190 0.19283
0.8 0.29033 0.91901 0.30853
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whereM; ln L. This results from an expansion in powers
b21 @10#. It appears that, ifq is small, it is necessary to g
to very largeL and/or b values to see the occurrence
localization. In the case of Fig. 17,b52.0 andL5400 are
not large enough to see this phenomenon. Figure 18 sh
that this is also the case for a different densityr.

The picture of what happens whenp.q can still be re-
fined. The crossover between trajectories extended ove
whole lattice ~mean field! and trajectories localized in th
largest void~lower bound! is in fact not direct. Some inter
mediate semilocalization may occur. As mentioned in S
VII, this was already evidenced for one-dimensional syste
at b,1 ~and for allp,q values! @10#. We will show now that
a similar phenomenon occurs forb.1 whenp.q. We then
have not onlya@b, but alsoa!1 (b.1). Thus, on the one
hand, the particle has a tendency to escape from the
because backscattering is weak and, on the other han
a!1, the free propagation is still favored over forwa
propagation through a scatterer. Ifa.1, the second effect is
negligible and the mean-field prediction will be appropria
as is the case in Figs. 17 and 18. Ifa!1, the competition

FIG. 16. Ruelle pressure as a function of the system size in
case of strong backscattering (p50.2) for r50.2 ~s! or r50.8
~h!. Lower bounds~solid lines! were obtained using a numerica
determination of the largest cluster size distribution.

FIG. 17. Ruelle pressure as a function of the system size in
case of weak backscattering (p50.8) at a high densityr50.8 ~n!.
The lower bound~dashed line! was obtained using a numerica
determination of the largest cluster size distribution. The mean-fi
prediction~dash-dotted line! is a much better estimate for the Ruel
pressure.
ws

he
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between the two effects may eventually promote some in
mediate configurations. As an illustration, we will consid
the configuration of Fig. 19: The whole lattice is solid
filled with scatterers except in the low-density region of s
R. In this region,n isolated scatterers are placed at eq
distances from each other. We will compare the weights o
trajectory T1 undergoing only free propagation and bac
scattering, i.e., confined in a void in a strict sense betw
two isolated scatterers, and a trajectoryT2 going through the
n isolated scatterers and thus exploring the entire lo
density region of sizeR.

During t time steps,T1 will undergo t/@R/(n11)# back-
scatterings, whileT2 will undergo t/R backscatterings and
tn/R forward scatterings. ThusT2 has a higher weight than
T1 if

qb ~ t/R!pb ~ tn/R!.qb @ t~n11!/R# ~68!

or, equivalently,p.q. This shows that as soon asp.q,
localization may occur not in the largest void but in a lar
low-density region. However, whenL increases, we specu
late that it is more and more likely to find a large void th
will nevertheless dominate the result. We have discussed
dependence of localization on the probabilityp whenb.1
only, and not whenb,1. Indeed, localization in a void
(b.1) is very sensitive to the strength of backscatterin
much more than localization on a cluster (b,1). In a clus-
ter, many scatterers may reverse the velocity of the part
and thus contribute to localization. As a consequence, lo
ization will be possible even for a small backscattering pro
ability. In a void, there is only one site at each end of t
void to send back the particle, and thus having a small ba
scattering probability makes it difficult to trap the trajector

IX. CONCLUSION

We conclude this paper with a number of remarks.
~i! We have shown that the Ruelle pressure of Lore

e

e

ld

FIG. 18. Ruelle pressure as a function of the system size in
case of weak backscattering probability (p50.8) at a low density
r50.2 ~n!. Again, the mean-field prediction~dash-dotted line! is a
much better estimate for the Ruelle pressure.

FIG. 19. Special configuration, in which a trajectory explorin
the whole low-density region may have a higher weight ifp.q
than a trajectory remaining in one of the voids.
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lattice gases in the limit of infinite systems is complete
determined by rare fluctuations in the configuration of sc
terers. Thus it carries no information on the global struct
of the disorder. Numerical studies allowed us to show t
this localization process also holds for finite but large s
tems, for all but a small range ofb values. Then we were
able to predict quantitatively the Ruelle pressure for alb
except for a small region aroundb51. A summary of this
prediction may be given in the form, forb,1,

c~b,r!. ln@pb1qb#2
p2pbC~r!

2qb~ log10L !2 ~69!

and, forb.1,

c~b,r!.H b~ lnq!@D~r!/ log10L# if L,Lc~p,r!

r ln@pb1qb#1O~L22! if L.Lc~p,r!,

with Lc(p,r);exp@ln q/(r lnp)# and two functionsC(r) and
D(r), which depend on the distribution of the largest clus
size and were studied here numerically. It should be no
that the amplitude of the finite-size effects does depend or
and characterizes the disorder via the above functionsC(r)
andD(r).

As already discussed in@8#, these results can be immed
ately generalized to a whole class of diffusive systems w
static disorder. The special case of a continuous Lorentz
has been briefly considered in@10#.

Localization phenomena in fact appear very often in ph
ics, as soon as there is some competition between ener
cally favorable configurations and entropic effects. Some
calization effects were already shown in the framework
the thermodynamic formalism for deterministic maps@4# or
multifractals @5#. However, here such effects are evidenc
in hard-sphere systems as resulting from the quenched d
der. Localization occurs on the most extreme fluctuation
the disorder. For infinitely large systems, this fluctuati
may be arbitrarily large, which allows for a very pronounc
effect.

~ii ! The Ruelle pressure is a characteristic of the dynam
of the system not only for the isolatedb values where a
direct interpretation can be given~see Sec. II!, but also as a
whole. In the same way, in a power spectrum, only some
the points may receive an individual interpretation, but
whole structure of the spectrum is interesting. An open qu
tion is to know if enough information has been kept in t
region aroundb51 where delocalization doesnot occur, in
order to be able for example to reconstruct the structure
the disorder from it. In this respect, it would be interesting
rescale the region aroundb51 as the system size increase
in order to prevent it from shrinking to zero in the therm
dynamic limit. The scaling of this region with the syste
size has been estimated in@10#.

When localization occurs, the information contained
the Ruelle pressure concerns the properties of individ
scatterers. More precisely, the knowledge of theb regions in
which one given type of scatterers will dominate yields
measure of what could be called the isotropy of the differ
scatterers.
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~iii ! Numerical studies have been performed only in o
dimension. Analytical results showed that the localizati
occurring in the thermodynamic limit and the extension
the delocalized region aroundb51 can be generalized to
higher dimensions. Localization occurs also for finite b
large systems. The only difference with the one-dimensio
case is that now the lower bound may not be a good estim
for the Ruelle pressure at finite size. Indeed, the lower bo
chosen here was based on localization in hypercubic
mains. In fact, it may happen on domains with much mo
general shapes. Localization in higher-dimensional syste
has been discussed in much more detail in Ref.@10#.

The present type of localization in a dynamic phase sp
of trajectories is quite different from Anderson localizatio
in disordered conductors, where there is a mobility edge
two- and three-dimensional systems. The present type of
namic localization in thermodynamically large disorder
diffusive systems occurs inany dimension and for allb val-
ues, outside a small region aroundb51.
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APPENDIX A: LARGEST EIGENVALUE FOR A
CONFIGURATION WITH A SINGLE CLUSTER

In the case ofN scatterers packed in a single cluster in
system of sizeL5N1R21 with PBC, a perturbative calcu
lation for the largest eigenvalueL has been presented in Se
III B. Here we calculate the largest eigenvalue directly fro
the set of equations~34!.

First notice that the bulk equations~34! impose the rela-
tion ~43! betweenL and the wave numberk, as can be found
in a similar way to Eq.~27!. Now the wave numberk has to
be determined from the boundary equations

LRU1~1!5aU1~N!1bU2~N!,

LU2~1!5bU1~2!1aU2~2!,

LU1~N!5aU1~N21!1bU2~N21!,

LRU2~N!5bU1~1!1aU2~1!. ~A1!

We search for a solution of the form

U1~ l !5A exp@ ık~ l 21!#1c.c.,

U2~ l !5B exp@ ık~N2 l !#1c.c. ~A2!

By inserting this form into Eq.~A1!, we obtain four equa-
tions that determineA andB ~complex numbers!. Nontrivial
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solutions exist only if the determinant of the system va
ishes. This yields a transcendental equation fork that can be
solved using the ansatz

k5
p

N211d
. ~A3!

This ansatz is based on the assumption that the present
is similar to ABC, as soon asR is large enough. This will be
correct only forb,1.

The determinant is expanded in powers ofk. ReplacingL
by its expression~43! in terms ofk, we find

Det524k2~db2a1b!~LR1a1b!

3@db~LR2a2b!2~a1b!~LR1a2b!#. ~A4!
-

ase

Setting this determinant equal to zero yields two solutio
We select the one that gives the smallestk, i.e., the largest
eigenvalue, and find expression~44!.

APPENDIX B: RECURRENCE FORMULA
FOR THE DETERMINANT OF w

For a one-dimensional system, the transition matrix ha
form such that an exact recursion relation can be found
calculate its determinant. We will first illustrate it for ABC
The transition matrix is of the form
tions

or
w51
L b2 a2

b1 L

L b3 a3

a2 b2 L

L b4

a3 b3 L

•••

L bL21 aL21

bL22 L

L bL

aL21 bL21 L

2 . ~B1!

If the l th scatterer is located in sitej , we defineDl as the determinant of the 2j 21 first lines and columns. An auxiliary
quantityEl is obtained fromDl by removing the last column and the penultimate line. Then the following recursion rela
hold:

Dl 115L2RlDl2bEl 11 , El 115bDl1a2El . ~B2!

Using the initial conditions

D15L112R0, E150, ~B3!

we can iterate Eqs.~B2! and find the determinant for the whole matrixw as

Det~w!5L112RNDN . ~B4!

The recursive calculation is performed numerically. Forb50 ~i.e., L.2), it is possible to calculate the determinant f
matrices up to size 4(L21)2 with L5400, beyond which the method is spoiled by numerical overflow problems.

In the case of PBCs, the recursion relations are slightly more complicated. The matrixw is now of size 4L2 and reads
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w51
L aL bL

L b2 a2

a1 b1 L

L b3 a3

a2 b2 L

L b4

a3 b3 L

•••

L bL21 aL21

bL22 L

L bL aL

aL21 bL21 L

b1 a1 L

2 . ~B5!
if
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We choose the origin of the lattice such that there isno
scatterer in sites 1 andL. For PBC, this is always possible
there are two holes in a row somewhere in the configurat
which will be the case for all configurations ifr,0.5. Then
b15bL50.

It can be shown that the determinant ofw is given by

Det~w!5L2RN11DN2bDN* 2a2EN* 12L~2L!L21aN,
~B6!

whereDN , EN , DN* , EN* are obtained from the recurrenc
formula ~B2! with, respectively, the initial conditions~B3!
and

D1* 5L2~R021!b22bE1* ,

E1* 5b2
22a2

2. ~B7!

APPENDIX C: ARNOLDI’S METHOD

Consider ann3n matrix A. We start from a guessu0 for
the right eigenvector. In a classical power method, o
would apply the matrixA repeatedly to this vector until it is
aligned with the eigenvector associated with the largest
genvalue. With Arnoldi’s method, we built a basis ofm vec-
tors that will span the vector space more rapidly. Ifj vectors
$u0 ,u1 ,...,uj 21% of the basis have been obtained already,uj
is defined as follows. First matrixA is applied

uj85Auj 21 . ~C1!

Thenuj8 is orthogonalized with respect to thej first vectors
n,

e

i-

uj95uj82(
l 50

j 21

@uj8 ul #ul . ~C2!

Finally, uj is equal to the normalizeduj9 . This process is
iterated untilm vectors are obtained.

A reducedm3m matrix H is defined by

hi j 5ui 21uj , ~C3!

such that

A5UHUT1B, ~C4!

where U5$u0 ,u1 ,...,um% and B is expected to be small
Notice that the definition ofH implies thathj 11,j is the norm
of uj9 andhi j 50 if i . j 11. As a consequence, it is straigh
forward to calculate the determinant ofH and thus to find its
largest eigenvalueL by Newton’s method~we know that it is
smaller thana1b! and the associated eigenvectoryH . The
first approximation for the largest eigenvalue ofw is taken to
beL associated withUhH . If it is not satisfactory, the whole
process is repeated, takingUhH as a new initial guess. The
sizem of the basis has to be tuned in order to optimize
efficiency of the method.

A difficulty that this method shares with other iterativ
methods occurs when the largest eigenvalue is almost de
erate with the next smaller one. Then we may by mista
converge towards the second one. However, this is not a
problem as long as we are interested in the eigenvalue it
It should also be noted that, as usual, convergence theo
exist only for symmetric matrices, whereas the method
been applied here to nonsymmetric matrices.
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