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Chaos properties and localization in Lorentz lattice gases
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The thermodynamic formalism of Ruelle, Sinai, and Bow®&avid Ruelle, Thermodynamic Formalism
(Addison-Wesley, Reading, MA, 19¥B in which chaotic properties of dynamical systems are expressed in
terms of a free-energy—type functigiig), is applied to a Lorentz lattice gas, as typical for diffusive systems
with static disorder. In the limit of large system sizes, the mechanism and effects of localization on large
clusters of scatterers in the calculation f3) are elucidated and supported by strong numerical evidence.
Moreover, we clarify and illustrate a previous theoretical analjSisAppertet al., J. Stat. Phys87, 1253
(1997)] of this localization phenomenopS1063-651X97)00611-9

PACS numbgs): 05.45+b, 05.40+j, 47.52+j

I. INTRODUCTION properties of dynamical systems. For a given nfap will

assume hyperbolicity in order to ensure good ergodicity

Chaos theory was originally developed for deterministicpropertieg, the phase space is partitioned into cells. Each
systems, hence its nangeterministicchaos. When it is ap- sequence of cells explored by a trajectory (..,r;) int
plied to fluid dynamicgat a microscopic scale, i.e., the scale time steps is one poirf, of the dynamical phase spac@/e
of moving and colliding particles an open question is to shall refer to it as a trajectory ovetime steps(Mathemati-

relate it to macroscopic transport theory. This question haga|ly, this could also be formulated in terms of cylinder sets,

lead to a growing interest in extending chaos theory 10 sto; e the set of initial conditions that follow the trajectaf
chastic dynamics such as random walks in random NVirongyring the firstt time steps.

ments. It has been discussed extensively in Réfg] how
the stochastic dynamics of such statistical-mechanical sy
tems can be expressed as a deterministic map, from whic
chaos properties can be calculated.

A powerful tool for calculating chaos properties in a uni-
fied way for both deterministic and stochastic systems is th
thermodynamic formalispintroduced by Ruelle, Sinai, and ™ oo
Bowen[3]. The scope of this formalism, however, goes well Will P& exemplified in Sec. )l _ , _
beyond this application. We will now give a rough introduc- _ 1 he thermodynamic formalism will be applied to the dis-
tion to this formalism. tribution P(€2,), where(), replaces the previous subscript

Many nonlinear physical problems involve a complicated The partition function reads no&(,t) =2 P#({,). Note
discrete distribution functiofip;}. As it may vary in a very that each(), is counted with equal weight, i.e., the calcula-
irregular way withi, it would be attractive to repladg;} by  tion does not require priori knowledge of the invariant
a smooth function containing the same information about theneasure. The free energy is now defined as
structure of the distribution. One way to do this is to associ-is(8) =lim,_.., (1/t) InZ(B). In this context, it is calledRuelle
ate with the distribution a whole set of so-called escort dispressureor topological pressurelt contains information
tributions [4], defined asP;=(p;)?/Z(B), whereZ(B) is a  about the dynamics of the system, which can be extracted
partition functionZ(B)==i(p;)?. The parameteg allows again by varying the control paramet@r For example, for
one to scan the structure of the initial distribution. La@e- an open system, the escape ratés such thaty(1)=—vy
values enhance the most probable trajectories, whereas negaid ¢(8) vanishes wherB is equal to the fractal dimension
tive B's focus on the least probable trajectorjege impose  dy of the repeller(set of trajectories that never escapehe
that (p;)?=0 if p;=0, so that our definitions still hold for partition functionZ(,t) may be exponentially decreasing
negative 8's]. By analogy with thermodynamics whe@ (B8>dy) or exponentially increasingg<dy). For closed
would be an inverse temperature, a free-energy—like functiosystems, we havd,;=1 and for open systent, < 1.

Y(B) is introduced, which is related to the logarithm of the It has been found already in a more general frame that
dynamic partition functiorZ(). some nonanalyticity of the Ruelle pressure may occur at cer-
This formalism has been applied successfully, for in-tain 8 values[4,6,5,7. They are called phase transitions, in

stance, to multifractalgs]. The present paper deals with an- analogy with thermodynamics.
other frame of application of this formalism, i.e., the chaotic In this paper we study the influence of disorder on the
structure of the Ruelle pressure. We have applied the ther-
modynamic formalism to systems with static disorder and
*Permanent address: CNRS, LPS, Ecole Normale Sayre, 24  have found very peculiar featurg8]. In the limit of infinite
rue Lhomond, 75231 Paris Cedex 05, France. Electronic addressystems and for almost gl values, the Ruelle pressure be-
appert@physique.ens.fr comes completely determined by trajectories localized on

Notice that in the special case of stochastic processes on a
iscrete space, the phase space is naturally discretized. It is
ot necessary to partition it into cells. Referenggg] have
explained how the probabilitieB((},), needed in the ther-
gwodynamic formalism, can be constructed from the transi-
tion probabilities in the elementary Markov processiss
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rare fluctuations of the disorder. The global structure of thecollision is defined by the following rules. If there is no
disorder, in particular, the density of impurities, becomesscatterer atr,, then the particle moves ballistically, i.e.,
irrelevant. Depending o, the relevant trajectories are not re,;=r¢+¢;. This is expressed in terms gf, as

always localized onto the same type of fluctuations. The

crossovers between the different localization regimes are Gi(r 6, t+1)=i(r,b). @
charactgrjzed by nonanalytical points in the Ruelle Pressure there is a scatterer a, i.e., if p(r) =1, then the velocity
For finite but large systems, the Ruelle pressure is agaigs the particle is reversed with probability (c/,= —c;,) or

analytic. However, for mosg's it is still dominated by lo-  |of; unchanged with probabilitp (c;=c;), with p+q=1.
calized trajectories. Delocalized trajectories become relevanf, the propagation step the particle moves over one lattice
only in some limitedg regions that shrink to points as the gistance in the direction of its post-collision velocity, i.e.,

system size tends to infinity. rey1=r¢+cy. Then it hops from one site to the next one in

To be more precise, we have developed these ideas Rje direction of its velocityc;. Again, the corresponding
studying a particular model, tHeorentz lattice gasLLG). A eyolution of ¢; is given by

Lorentz gas consists of a moving light particle scattered

among fixed heavy particles. It may be considered as a $i(r+c ,t+1)=agi(r,t)+be_(r,t), (2
e o e A demeag i 3P A0 ~—1p (h eason for 1y rcaion i
used to study the connéction between the irreversible beha ecome clear 'Ia.1t¢r More .g'enerally, we define site-
: . . . . . ) \éfependent transition probabilities
ior of fluids and their chaotic properties at a microscopic

level. For example, Gaspard and Nicd® have shown that a(ry=ap(r)+1—p(r),
for an open system, the diffusion coefficient can be ex- . .
pressed in terms of the Kolmogorov-Sinai entropy and the b(r)=bp(r). 3

sum of Fhe positive Lyapunov exponents _for nonescaplngl_hey depend on the precise configuration of scatterers under
trajectories. The name Lorentz lattice gas is used when thgonsideration

light particle is, for reasons of simplicity, constrained to The probability(x,t) evolves with time according to a
move on &cubio lattice, with scatterers located at the nOdeSChapman-KoImogorO\,/(CK) equation with site-dependent

or sites. L _ transition probabilities, obtained by combining E¢s). and
The localization processes occurring when the thermody(z):

namic formalism is applied to such a system have been dis- R

cussed already in an extensive theoretical ana[yi$l§ The di(r+c t+1)=a(r)g(r,t)+b(r)d_;(r,t), 4
present paper contains the numerical counterpart and demon-

strates the validity of our analytical results. It clarifies the@nd more formally

mechanism of localization in large systems by explicitly cal-

culating the topological pressure for specific nonrandom con- B(x,t+1)=2 w(X|y)e(y,t). 6)
figurations in Sec. Ill. In Sec. IV an exact expression for the Y

Hausdorff dimension of the repeller is obtained for an openThe transition matrixw(x|y) represents the probability of

LLG. Moreover, numerical studies allow us to find a good going from staty={r’,c;} to statex={r,c} and is given by
estimate for the Ruelle pressure for large but finite systems

in Sec. VIII. As an intermediate result, the distribution for w(x|y)=(r—c ,r’)[b‘ijé(r’)+ 5iyl-+1f)(r’)]. (6)
the largest cluster of scatterers in random configurations . _
(Sec. VI)) is estimated theoretically and measured througHP the case of absorbing boundariepen system boundary

numerical simulations. We conclude in Sec. IX. statesy={r’",¢j}={1,+} and{L,~} referring to a particle
entering the domairD are excluded from thg summation.
This is equivalent to imposing the absorbing boundary con-
Il. THERMODYNAMIC FORMALISM ditions (ABC)

First we give a more precise definition of our model. A b (LH)=¢_(L,1)=0. (7)
number ofN fixed scatterers are randomly placed with a| the case of periodic boundariéslosed system we im-
probability p on theL sites of a finite one-dimensional lattice ose the periodic boundary conditiofRBC)

D, having either periodic or absorbing boundaries. The pres-

ence of a scatterer at site={1,2,..,L} is indicated by the i(r+L,H)=gi(r,t). 8

(Beon?lpei;l),nv\(/ﬁ[:a(%?i;),:?\lq/tél o 10) if the siter is occupied The transition matrix satisfies the normalization relations
A light particle, moving on the lattice, is specified at time

t (t=0,1,2,..) by astatex,={r,,c;}, where its position is > w(xly)=1 (closed

a site on the lattice and its velocity= =1 connects site; to X

one of its nearest neighbors. Leéi(x,t)=¢;(r,t) be the <1 (open. (9)

probability of finding the moving patrticle in state={r,c;}.
The time evolution of the particle from timeto t+1 The inequality sign in Eq(9) for opensystems refers to the
consists of a possible collision followed by propagation. Thecase wherg={r,c;} denotes a state at a boundary siteith
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nonentering velocitfboundary states with entering velocity P(Q4|x0) =H§Z%W(XT+1|XT) (14)

do not occuy. Indeed, the sum over excludes states where

the particle has escaped from the domBirHence the prob- on account of the CK equatiai®).

ability for remaining inside the domain decreases when the The dynamic partition function is then introduced as a

particle finds itself on a boundary site. sum over staté), in this dynamical phase space
The special casp=1 is called a persistent random walk
(PRW) wherea(r)=p andb(r)=gq for all r. Then the mov- Z(B.tlx) = P(O.x)18
ing particle simply undergoes a random walk with correlated (B:t1x0) 521[ [P(Qifxo)]
jumps.
For Iater_analy5|s itis convenient to also have a qm‘erent _ z HtTi%W(,B;XT+1|XT)
representation of the CK equation. It can be obtained by X1

eliminating the probabilitiesp;(r,t) at nonscattering sites

with the help of Eq(1). Letr, (I=1,2,..,N) be the position _ 2 Wi By Xo)- (15)

of the Ith scatterer and};=r,,,—r, the free interval be- y

tween scatterers. For ABC we define in additRg=r,—1 _ o o
andRy=L—ry. Then it is straightforward to show that the N analogy with the methods of equilibrium statistical me-
scattering amplitude);(I,t)= ¢;(r, ,t) (probability at scat- chanics, there is an inverse temperaturelike varigblghich

tering siter,) satisfy the closed set of equations allows one to scan the structure of the probability distribu-
tion for €). In the second line of Eq15) we have introduced
U,(l+1t+R)=auU_,(I,t)+bU_(I,1), the pseudotransfer matrix as
U_(I-1t+R_y)=bU.(I,t)+au_(l,t), (10 w(B;xly)=[w(x|y)]? (16)

andw'(B) denotes theth power of matrixw(3). The larg-

with the boundary conditions
y est eigenvalue\(B) and corresponding left and right eigen-

U;(N+1,t)=U;(I,t) (PBO), vectorsv(B,x) andu(gB,x) of w(B;x|y) are defined analo-
gously to Eq.(12), wherea andb in Egs.(2)—(13) take the
U.(1)=U_(N,t)=0 (ABC). (11  values
Note that Eq(10) depends only on the set edindominter- a=p’, b=qg’. (17)

vals{R,|I=0,1,2,..,N} (the coefficienta=p andb=q are
surevariableg, whereas the CK equatigq#) depends on the
set of random transition ratea(r),b(r)[r=1,2,..,L}. It
will appear below that the basic chaos properties can be e
pressed in terms of the largest eigenvaluand the corre-
sponding left and right eigenvectors(x)=uv;(r) and
u(x)=u;(r) of the nonsymmetric matriw appearing in the
CK equation(5):

As the system is ergodid 1], Z(3,t|x,) does not depend
on the initial conditionx, in the long-time limit, for almost
all configurations of scatterers. We already mentioned that
)2(,8,t|x0) vanishes for open systems as time tends to infin-
ity. More precisely, for large times, the suh5) is domi-
nated by the largest eigenvalué) of the pseudo transfer
matrix w(8;x|y), which is nondegenerate for ergodic sys-
tems. More explicitly, we use the spectral decomposition of

wu=Au, vw=Av. (12 wi(g), i.e.,
t . — t
Then, any solutionp(x,t) of the CK equation approaches wWi(Bxly)=v(B)[A(B)]U(B,Y)
A'u(x) for t—c. For our purpose it is again more conve-
nient to deal with Eq(10) and determine only the compo- +Z40 va(BX)[An(B)]'Un(BY), (18)

nents U;(l) of eigenvectors at the scattering sites, i.e.,
Ui(1,t)=A'U;(l) and the eigenvalue equation follows from

: where A,<A for all n#0. Thus the second term decays
Eq. (10), i.e.,

exponentially faster than the first one and we obtain for large
t
ARU (1+1)=aU (1)+bU_(I),
+(1+1) +(D) Q) (13

AR-U_(1-1)=bU, () +au_(l), Z(B,t|Xo)2[A(B)]t; v(B,Y)U(B.Xo). (19

where the componentd, (1) satisfy the boundary conditions

(11). P 0 bt y It should be noted that the partition function depends on the
To describe the thermodynamic formalism we introduce &-onfiguration of scatterers under consideration.

dynamical phase space consisting of all possible sequences. 1€ Ruelle or topological pressugeg,p) is defined as the

Q,=1X1,Xz,... X}, which represent an allowed Sequence|nf|n|te—t|me limit of the logarithm ofZ per unit time step, in

(i.e., in the ABC case, nonescaping from doma@inof the & Way similar to the definition of the free energy per particle

mO\;ing particle visitiné the state.={r_.c.} at thesth time in the canonical ensemble in the thermodynamic limit, i.e.,

step. The probability?(Q|x,) onQ, given that the moving 1

particle is inxy at 7=0, is given by the multitime distribu- P(B,p)=lim —(InZ(B,t|X0)),, (20)

tion function toee
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where( ), indicates an ensemble average not only over all 1234 L
initial conditions, but also over all realizations of the disor- 00— 00 —0 @
der, i.e., all configurations of scatterers. Again, it can be 1 2
expressed in terms of the largest eigenvalue of the matrix 1 N L
w(B) as 00000000 — ——  — - (b
1 N
¥(B.p)=(INA(B)),. (21
1 M M3+R N+R-1 L
where we have taken the infinite-time limit inside the con- WM“M ©
figurational average. ! M M+1 N
For some specifig3 values, the Ruelle pressure has an '
explicit physical meaning: Thpositive Lyapunov exponent FIG. 1. Three examples of configurations withscatterers on a

is A\=—4¢'(1); the escape rate for open systems islattice of sizeL: (a) mean-field configuratior(b) one solid cluster,
v=—1y(1); the Kolmogorov-Sinai entropyhxs follows  and(c) two solid clusters of siz& andM =N—M. Above(below
from the generalization of Pesin’s theorem and yieldseach line of sites we indicate the labeling of sitesatterers
hxs=#(1)—«'(1); the topological entropyh; satisfies
hr=(0); and theHausdorff dimensiord,, of the repeller scatterers, which are relevant for describing the dynamic par-
(the set of trajectories that never escafoe an open system tition function and Ruelle pressure in large systems. This
is the zero-point of the Ruelle pressure, i.¢(dy)=0. A  will be done by a theoretical analysis of the largest eigen-
prime in the above formulas denotegalerivative. value of a number of relevant configurations. First we dis-
For an open system, the transition matsixs not stochas- cuss in this section mean-field-type configurations, relevant
tic, i.e., its largest eigenvalue is strictly smaller than onefor g8 close to unity, as discussed in R¢l2]. Here the
Due to the loss of trajectories at each time step, the eigerfluctuationsin the lengths of the interval between scatterers

vectors forB=1 decay according to aresmall In Secs. IlI B and Il C we study configurations
with an increasing number @lid clusters of scattererse-
wu=exp(—y)u, vw=exp(—y)v. (22)  gions of densityp=1), separated by regions free of scatter-

. ) _ _ ers(voids), as illustrated in Fig. 1. This is helpful in order to
In order to obtain the invariant vectar, the eigenvectors nqerstand the mechanism of localization. Large voids have
have to be rescaled at each time step, as explained in Rehe tendency to divide the system in independent subsystems
[1]. A new transition matridl is defined as with a higher density of scatterers. We will show that only
the subsystem containing the largest cluster is relevant for
) (23 determining the dynamic partition function.
v(y) We start by considering periodic arrays of scatterers with
constant free intervd, =R for |=1,2,..,N, which corre-
ponds to a PRW on an ordered lattice with lattice distance
R. The eigenvalue equatiofi3) can be solved by making
the ansataJ;(1)=A; exp(kl). By setting the resulting secu-
lar determinant in Eq(13) equal to zero, one finds for the
> xOOII(x]y) =2, TI(x]y)=1. (24)  largest eigenvalua
X X

[A(B)]R=a cok+[b2—a’sirPk]Y2

v(X)
IT(x]y)=exp y)W(x|y) ——

This matrix is stochastic, i.e., its largest eigenvalue is equ
to 1 and is associated with a left eigenvectdx) =1, as can
be seen from

The corresponding right eigenvector is the invariant vector

a

v (X)U(X) =(a+b) 1—%k2+--- (k smal). (27)

()= =y (25
(ulv)

: o The wave numbek has to be determined from the boundary

where it can be verified that conditions(PBC or ABQ. In the PBC case the allowed

vectors follow fromU;(I+N)=U;(l), so thatk=2=n/N
> (x]y)m(y) = m(X). (26)  with n=0,£1,=2,... . Consequently, the wave number

y k=0 yields the largest eigenvalji& (8) ]R=a+b.

, — , . , : Next consider the open system, with ABC
With definition (25), r is normalized. The invariant vecter [U,(1)=U_(N)=0]. The eﬁgenvegtou-(l) is a special
- : i

gives the probability of finding the particle on a given site
and with a given velocityprovidedit has not escaped after
infinite time.

linear combination of expkl) and exp(ikl), i.e.,

U,(hH=Asink(l-1),

Ill. CHAOS PROPERTIES OF SPECIAL .
CONFIGURATIONS U_(1)=B sink(N—1). (28)
A. Mean-field configurations To determine the allowek value we substitute E428) into
In the subsequent subsections we develop a theoreticllgs. (13), taking |=1 for the first one and=N for the
understanding of some typical properties of configurations osecond one. This yields
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ARA sink=bB sirk(N—1), AU_(2)=bU, (3)+aU_(3),
ARB sink=bA sink(N—1). (29

The ratio of the two equations yields= =B. As the com-
ponenty28) of the largest eigenvector of the positive matrix
w(B) need to be positivéthey represent probability densi-

AU_(N—=1)=bU, (N)+ea[U_(N)/€],

ties), it follows that A=B=1. Substituting expression28) AU, (N)=aU,(N=1)+bU_(N-1),
into the first of Eqgs.(13) with |=2 and using Eq(29) to
eliminate AR from the left-hand side, we obtain a transcen- ARU_(N)=eb[U,(1)/e]+aU_(1), (34

dental equation for the wave number
where thee(1/e) factor has been introduced to clearly dis-
a sink=b sin(kN), (300 play the structure of the following perturbative calculation.
For alarge void of lengthR the solution of Eq(34) for a
configuration in aclosedsystem of length.=N+R—1 is
expected to look like that for anpensystem of lengthN
with N scatterers, studied in Sec. Ill A. This can be inferred
from the first and last of Eq$34), wheree=A'"Ris a small
quantity for largeR: The eigenvector components, (1)
andU _(N), corresponding to “entering” velocities, are ex-
(31) pected to be linear im. In a perturbation expansion in pow-
ers ofe, the componentd , (1) andU _(N) arevanishingto
dominant order ine, corresponding to absorbing boundary
conditions. The first and last of Eq&4) can be considered

valid for N=1,2,... with ABCs. Forarge N, the smallest
root of this equation is close tk==/N; so we set
kN=7— 6k such that sif{N)=sin(d) and find for smallk
that §=a/b. This yields for the ABC case the smallest al-
lowed wave number

. T n
" N+ N+alb

k

and the largest eigenvalue

2 as new boundary conditionseplacing Eq.(11) and the re-
[A(B)IR=(a+b){1— = | ——=| +O(N%)}. maining 2(N— 1) equations can be written in matrix form as
2b |N+a/b
(32) AU=WOU + eA(U/e), (35

From the summary below Eq21), all chaos quantities for

periodic arrays of scatterers with ABC can be calculatedvhereWo(L,i|l",j) is the matrix representation of E(L3)
from Eq.(32). Themean-field theoryor the LLG, discussed With Ri=R,_;=1 for the ABC case. Inspection of E(B4)
in [12], follows from this result by settingRk equal to the shows that the perturbation matrxhas the form
average free interval lengttmean free pathR=L/N=1/p

and the resulting Ruelle pressure follows from E@4) and ALt jy=as(1,2)8(i,+)8(1",1)8(j, +)

(32) as +as(,N=1)8(,—)8(1",N)8(j,—),
a T 2
y*M(B.p)=p In(a+b)— 2bp r/(bp)) +O(L™) (36
(33 whered(l,1") is a Kronecker delta. The eigenvalue equation
(35) can be solved by a perturbation expansion around the
as obtained if12]. We recall here thaa=p” andb=g®. solutions{A,,U} of the open system, discussed in Sec.
HA, ie, A=Ag+eA;+--- and Uj=U’+eUl+-- |
B. PBC configurations with a void yielding the equations oD(1) andO(e),
An analysis of the eigenvalua(B) for a configuration
with a singlevoid of width R (i.e., R—1 empty sitesin the (Ao—WO)U°=0,
PBC and ABC casefsee Fig. 1b)] provides essential in-
sights for dealing with more complex distribution of scatter- (Ag— WO UL+ A,U%=AUL, (37)
ers. In this section, PBC are treated; in the following section,
ABC are treated. whereas the new boundary conditions follow from the first

We start with a perturbative calculation for lare Re-  and last of Eqs(34),
call that the Hausdorff dimensiody; of the repeller is de-
fined throughy(dy) =InA(dy)=0 and consider firsg<<d, AoU1+(1)=aU+(N), AUE(N)=aU%(1). (39
so thatA (B) > 1. The position of the leftmost scatterer of the
cluster is chosen as site number 1. Equatigt® for the

scattering amplitudes read in this case Here A, andU; (1) are explicitly given in Eqs(32) and(28)

with A=B=1. To solve théD(¢€) equations in Eq437), we

ARU_(1)=aU.(N)+eb[U_(N)/e], need the left eigenvectorvio(l) defined through
VOWP= A V0. Using the symmetries in the explicit form of
AU_(1)=bU_(2)+aU_(2), the 2(N—1)-dimensional matrix\°, it is straightforward to

relate the components of the left and right eigenvectors
AU, (2)=€a[U,(1)/e]+bU_(1), Vg(l) and Ug(l), respectively, with the result



Ve (H)=U%(1—1)=sinkg(N—1+1),

VO (1h=UY9(1+1)=sinkyl, (39)
whereko= 7/(N+a/b) as given in Eq(31). The eigenvalue
in first order follows from Eq(37) by taking the inner prod-
uct of Eq.(37) with V°, yielding

_ (VOAlUY) 2 (a)? RS
€ 1—Ew—; B (a+b) kO (N—)OO),
(40)
where inner products are defined by
XIV)=2 2 X(OYi(h. (41)
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FIG. 2. Eigenvalue\(B) at 8=0, for a configuration with only

Here the numerator and denominator have been calculatathe void containindR— 1 empty sites and PBC, as a functionRaf

from Eqgs.(28), (36), (38), and(39) with the result
(VOlAlUYY=aVi(2)ul(1)+aV® (N-1)UL(N)2a?
X[ sinkg(N—1)1%/A,
=2(a?/b?)(a+b)k3,
( )( ko (42)
(VO|U®) = cotkysinkyN—N coskgN=N+a/b=/kg.

We conclude that the largest eigenval¢B) and corre-
sponding Ruelle pressurg(8)=InA(B) in a PBC configu-
ration with N scatterers and a void of lengkh decay expo-
nentially with a correlation lengthé=1/In(a+b) to the
eigenvalue of a solid cluster & scatterers with ABCs.

In Appendix A we present a detailed calculation, exact for

all R (R=1,2,..). Ityields for the largest eigenvalue

A(K)=(a+b){1—(a/2b)k2+ -1, 43)
where
al[l+(a+b)! R
k=k;=m {N+6 W } (44)

A plot of A(ky) is shown in Fig. 2. The expansion of this
result, withe=(a+b)1 "R, agrees with the perturbation re-
sult(40). ForR=1 (no empty sitek the resulting wave num-
ber reduces tti; =0, as it should for a closed system. Again,
Eq. (44) shows thatk and A (k) decay within a correlation
length £&=1/In(a+b) towards the corresponding valuég
and Ay(ky) of an open system with a solid cluster bf
scatterers. Equationgd) and (44) allow us to calculate all
chaos properties of the configuration in Figb)lwith the
help of Eq.(21).

C. ABC configurations with a void

We consider an open system with two solid clus{eese
Fig. 1(c)] with, respectivelyM and M=N—M scatterers,
separated by a void of lengtR, and study the eigenvalue
problem for B<dy so thatA(B)>1. We expect that for
sufficiently largeR the M and M blocks become indepen-
dent and the components_(M) and U, (M +1) of the

The upper(lower) curves correspond to the numerical results for
N=20 (N=10); crossescircles give the prediction based on Egs.
(43) and (44); horizontal lines indicate the exact eigenvalue
Ao(B=0) for a PRW on a lattice of size’=N with ABC. For
B=0, é&=1/In 2=1.4 is the correlation length.

and can be treated as new ABC in a perturbation calculation.
We therefore write the eigenvalue equatidi®) as a set of
2(M+M—4) coupled equations for the scattering ampli-
tudes {U;(N|U;(H} with  (li)e{17,2%,27,...,(M
-1)" ,MT|(M+1)",(M+2)",...,(N—1)",(N-1)",N"}

of the general form
U A
U + e

i

with “absorbing” boundary conditions for thé4 and M
blocks in the form

we o
0 W

Ule

me) ’ (49

U.(1)=0,
ARU (M)=eb[U,(M+1)/e]+aU_(M+1),
ARU, (M+1)=aU,(M)+eb[U_(M)/e],

U_(N)=0. (46)

The block matrices\°(M) and W°(M) refer, respectively,
to theM andM clusters and have the same form\&§(N)

for the N cluster in Eq.(36). The matrix A connects the
block matrices to the entering stated_(M) and

U, (M+1),

Adli[l'y=as(I,M—=1)5(i,—)8(1",M)8(j,—)
+as(l,M+2)8(i,+)8(1",M+1)5(j,+).
(47)

The boundary conditiong6) couple the two blocks. These
boundary equations show that_ (M) andM (M +1) for
large R can indeed be treated as small quantities of order

eigenvector, corresponding to entering velocities, are smak=A'"R, as in Sec. Il B.
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The analysis of this problem is similar to that in Sec.
[l B. The eigenvalue equatio5) can be solved by an ex-
pansion in powers o&.

The eigenvalue problem tperothorder in e reduces to
two decoupled equations for the two isolatddandM clus-
ters with ABC, reading

u°>

o wlls
For sufficiently largeM and M_thel_argest eigenvalues of the

block matrices are\ (ko) andAy(ko) [see Eq(43)]. These
are also eigenvalues for the whole syst@® with right and
left eigenvectors:

{U°ko)[0},

we o
0 WO

UO

Ao o (48

{VO(ko)|0} with ko=m/[M +a/b],

{0JU%Ko)}, {0|VO(ko)} with ko= /[M +a/b].
(49

The right and left eigenvectors in Eq&l9) are again given
by Egs.(28) and(39) with N replaced byM andM, respec-
tively. If M>M, thenA (kg)>A(ky) andAy=A (k) is the

largest eigenvalue with the corresponding eigenvectory’

{U°(ko)|U°(ko) =0} and{V°(ko)|V°(ko)=0}.
To linear order ine, the boundary conditiongl6) require
for the component§U*(ko)|U(ko)}

ui(1)=0,
Ul (M)=aU®(M+1)/A,=0,
UL(M+1)=au%(M)/A,,

UL (N)=0. (50)

The last equality on the second line follows as all compo-

nents of U%k,) are vanishing. First-order perturbation
theory for the largest eigenvalue yields

eA=¢€(VA|ULY=0 (52)
as a consequence of Ed50).

Second-order perturbation theory yields a nonvanishin
result, proportional tae?=(a+b)?~2R. Therefore, the larg-
est eigenvalue for the configuration of Figcjlas a function
of the width of the voidR has the form

A(R)=Ay+constke™ R-D/¢ (52)

with a correlation lengthé=[2In(a+b)]"!, a factor 2
smaller than in Sec. Il B.

In an ABC configuration with two clusters containimg

M. H. ERNST

1.9990

1.9980

A (B=0)

1.9970 +

1.9960
10

2 4 6 8
Nb of empty sites R - 1
FIG. 3. Eigenvalue\(B) at =0, for a configuration with two
clusters of sizes 50 and 30, separated by a void of Bzand
ABC. The horizontal line indicates the exact eigenvalue
Ao(B=0)=1.996D... calculated from Egs.(43) and (44),
for a PRW on a lattice of sizeL=50 with ABC.
&(B=0)=1/[2In2]=0.7 is a theoretical estimate for the correlation
length, in good agreement with the numerical results.

ith more clusters: (i) The largest eigenvalud(B) in a
PBC configuration(closed systemwith at least one void
larger than¢ is equal to the largest eigenvalue for the corre-
sponding ABC configuratioiopen systemand (i) in any
ABC or PBC configuration with clusters separated by dis-
tancesR,>¢ (1=0,1,..,N) the largest eigenvalue & (ko)
given by Eq.(43), with ko= 7/[ M nacta/b], whereM . is
the number of scatterers in the largest solid cluster. In fact,
we will use case(ii) to illustrate the localization process
mentioned in the Introduction. In Sec. Il we have seen that
the largest eigenvalua(g) of the matrixw(B) was domi-
nating the dynamic partition functioZ(3,t|x,) at long
times and thus the Ruelle pressi{iEgs. (19) and(20)]. On
the other hand, we just found that, f8<<dy, A(B) is de-
termined by the largest cluster of the configuration, as if this
cluster was isolated and surrounded by absorbing bound-
aries. It means that the trajectories that dominate in €LBn
are those that always remain localized inside the largest clus-
ter. The other trajectories traveling throughout the system
may be omitted as well. Thus the Ruelle pressure in large
ystems will not reflect the global structure of the system but
nly characterize the largest cluster present in the configura-
tion. It is precisely this phenomenon that will be referred to
as localization. This can be illustrated by calculating the in-
variant vector(see Fig. 4 Only the states corresponding to
positive velocities are plotted here. States with negative ve-
locities give the same result, up to a translation

a_(rN{ulp)y=u_(rNv_(r)=v,(r+1)u,(r+1)

=, (r)(ulv). (53

and M scatterers, respectively, and separated by a distance

R, the largest eigenvalue\ approaches the eigenvalue
Ao=A(kp) given by Egs.(43) and (44) at an exponential
rate. ThisA (kg) is solely determined by thiargestcluster.

After an infinite time, all the probability of finding the par-
ticle is concentrated on the largest eigenvector.
To get some insight into how the Ruelle pressure varies

The plot in Fig. 3 shows the numerical solution of the eigen-With the configuration of scatterers, we may compare the

value problem.

largest eigenvalueA(B) obtained for each of the three con-

The main conclusions of the previous subsections, referfigurations of Fig. 1, keeping dixed density p=N/L

ring to B<<dy, can be directly generalized to configurations

=(M+M)/L. The eigenvalues are, respectively,
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0.4

invariant vector

-0.1

0 20 49 60 80 100
coordinate r

FIG. 4. Invariant vectorr, (r)=u,(r)v,(r). The location of
the two clusters has been indicated with dashed lines.

a ,\*
A,=(a+hb)? 1_%kN)'
Ap=(atbh)|1- k2

a 2
A.=(at+b) 1_%kM . (549

As p<1 andB<dy, i.e.,a+b>1, it is straightforward to
show that

Ag<Ac<Ap. (55)
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Sec. Il A. It can be calculated by setting the right-hand side
of Eq. (32) equal to unity and solving fg8. For largeN (i.e.,
small k), the root is

2
+O(N™%

a
N+a/b

4 .| P
e )
2

b +0O(L™%),

1 ( m
Nciosed\ L +a/bp

(56)

where D=p/2pq is the exact diffusion coefficient of the
one-dimensional LLG[13] and \sed™pAo=—p(p Inp
+qIn q) is the exact Lyapunov exponent for a closed LLG,
as obtained if12,2].

V. NUMERICAL METHOD

The remaining part of this paper describes the numerical
diagnostics in which numerical and analytical results will be
compared. In this section we start with a description of the
numerical method used to calculate the largest eigenvalue of
the large random matrixv(3;x|y) in Eg. (6) for a fixed
configuration of scatterers characterized by a certain system
sizeL and number of scatterel$. Then the Ruelle pressure
is obtained as the logarithm of this eigenvaliy. (21)].

In one dimension, a recurrence formula can be found that
allows us to compute numerically the exact value of the de-
terminant ofw(8) — A1, wherel is the identity matrix. Then
A can be determined as the largest root of the equation
defw(8)—A1|=0, using Newton’s method. The recurrence
formula is derived in Appendix B. This method can be ap-

The largest eigenvalue is obtained when all scatterers afied provided that is not too larggless than 400 Indeed,
packed together in one solid cluster, while the smallest corif the system size is larger, numerical overflow problems
responds to the mean-field configuration, where no cluster igccur.

formed and thus localization is not possible. In Sec. V it will

For large system sizet 400) and for8+ 1, the calcu-

appear that the largest eigenvalue of any other configuratiolation of the determinant involves very large numbers that

falls betweenA, and A,. We will show that, for large.,

cannot be handled by workstations. Under such circum-

most configurations contain a largest cluster that will entirelystances,A has been determined by using Arnoldi’s algo-
determine the Ruelle pressure. Indeed, as we start to see witlthm, which is an iterative method akin to Lanczos algo-

the configuration in Fig. (&), localization is not specific to

rithm [14]. Let w be an nXn matrix whose largest

very special configurations, but occurs more generally foreigenvalue has to be determined. The idea is to scan rapidly

most configurations.

the eigenvector space and find a subsgacentaining them

Finally, we stress that, in this section, only the casemost significant eigenvectors. Then we computenaxim
B<dy was considered. F@> 1, a complementary phenom- matrix H as a kind of projection ofv onto the subspad¥.
enon occurs, i.e., localization in the largest void instead offhe largest eigenvalug of H associated with the eigen-

largest clustef10].

IV. HAUSDORFF DIMENSION

The eigenvalue equation in representatid@3) and the

vectoruy yields an approximation for the largest eigenvalue
of w andlfu for the corresponding eigenvector. If the result

is not satisfactory, the whole process is repeated, taking

as an initial guess. The method is explained in more detail in
Appendix C. The sizen of the basis has to be tuned in order

result of Sec. lll A enable us to carry out an exact calculationo optimize the efficiency of the method.

of the Hausdorff dimensiod, for an open LLG, which is

defined as the root of(B=dy)=0 or, equivalently, as the

root of A(B=dy)=1 on account of Eq(21). For a closed
LLG there is no fractal repeller and},=1.

VI. RANDOM CONFIGURATIONS

In this section we will illustrate that localization occurs

The important observation is thdy; is independent of the not only in the special configurations considered in Sec. lll,
guenched disordeand depends only on the total number of but in the majority of random configurations realized in large

scatterers. This can be seen by combining @8 with the
requirementA (B8)=1. The random variable/R,} disappear

systems. To show this we generate some random configura-
tions of a lattice ofL=100 sites with a filling fraction

from the equation, so that, is the same as for the PRW in p=0.3, as shown in Fig. 5, and calculate the largest eigen-
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@ BER A Bl REIRERA M RED B ©B FIG. 6. Among 1000 random configurations generated for

L =50 andN =25, we select the configuration corresponding to the

e B RA@A & B B EOKE 000 RMENERD % (a) largest andb) smallestA value, as determined numerically. The

shaded areas correspond to the location of scatterers.

FIG. 5. Random configurations obtained for 100 andp=0.3.
The largest cluster is of siz@) 6, (b) 5, (c) 5, (d) 4, and(e) 2. The a ..
shaded areas represent the location of the scatterers on the lattic? A(ky)=In(a+b)— %77 IM

value A(B) and corresponding Ruelle pressung(g) <y(B,p)<In(a+b) (B<1), 57
=InA(B) numerically. We further determine the siké of —
the largest cluster in each configuration and calculate the BUng)IM=<y (B,p)<0 (B>1),

largest eigenvalud (B;ky,) for an isolatedV cluster, using ) . —
Egs. (43) and (44) with ky = 7/[M +a/b]. The results are whereM is the size of the Iarggst clugter ah that of the
displayed in Table I. For comparison, the mean-field valudargest void. The upper bound is a direct consequence from
for the system sizé. and number of scatterefs=pL is  the inequalities
calculated from Eg. (320 and vyields, for B=0,
Yme(0)=0.2078 for ABCs, and)ye(0)=0.2079 for PBC
[wherek=0 in Eq.(27)].

The Ruelle pressure X(B) is in fairly good agreement
with the estimate In\(B;ky) for the three first configurations  anq we refer td8,10] for more details. Fop<1 (8>1) the
(@)—(c) (see Table)) i.e., as soon as the largest cluster sizejower hound is the Ruelle pressure obtained by keeping only
M is on the order of five sites. In other words, the dynamicthe |argest clusteflargest void, bordered by two scattefers
partition function(15) and Ruelle pressur€20) calculated  of the configuration and using ABC. In Secs. Il B, Il C, and
from the subset of trajectorie3; that remain on the largest VI, we have found that fo3<1, this is not only a lower
cluster for all time give already a fair approximation to the hound but also a good estimate for the Ruelle pressure, as
actual Ruelle pressure defined by summing in E&S) and  5o0n ad_ is large enough. A consequence is that, among all
(20) over all trajectorie€), that stay inside the domal for  hossible configurations, the configuration wit scatterers
all time. This means that there is already a large degree Qp|idly packed in a single cluster gives the maximum value
!ocallzatlomn .conflgurat!ons(a)—(c) and, to a Iesger extent, of the Ruelle pressure. On the other hand, the minimum
in (d), but not in(e), in spite of the small system size=100  ya|ue is obtained for the mean-field configuration with scat-
and numbeN=pL =30 of scatterers. . terers spaced at regular intervals of length 1/p.
~ On the other hand, if there is no large clusfias in con- As a confirmation, we have verifigdee Fig. 6 that in a
figuration (e), whereM=2], then A(B;ky) is not a good  given set of 1000 configurations, the largest eigenvalue for
estimate at all. The mean-field value is slightly better, butg<1 did correspond to a configuration where all scatterers
still is a poor estimate, as there are large fluctuations in thgye essentially packed together, whereas the lowest value

a+b>1 if <1, (58

at+b<l if g>1, (59

distances between the scatterers. was obtained for an “almost mean-field” configuration, i.e.,
the distance between scatterers is more or less constant. This
A. Bounds on Ruelle pressure is in agreement with our expectatiof0]. To illustrate lo-

. . calization in these configurations, we have plotted the invari-
In [8,10] it has been shown that the Ruelle pressure ISt vectomw . (r)u., (r) as a function of (Figs. 7 and & For
bounded by configuration(a), the eigenvector is entirelpcalizedon the
large cluster on the left. Configuratigh), which is more of
mean-field type, corresponds more or less toeatended
state. However, there is still partial localization in regions of
higher than average density.

TABLE I. For the random configurations of Fig. 5, with= 100
and p=0.3, we compare the actual Ruelle pressyfg) with the
estimate INA(B;ky) based on the largest cluster sigg for =0.
PBC are used for configuratiorig)—(c) and ABC for (d) and (e).

The corresponding mean-field valugg(0)=0.2079(PBC) and
Ynr(0)=0.2078(ABC) do not provide a sensible estimate. VII. DISTRIBUTION OF LARGEST CLUSTER SIZE

Up until now we have studied single configurations. In the

Configuration Ruelle pressure M Estimate following section we will present results averaged over the
@ 0.59532 6 0.589 disorder and compare them with the upper and lower bounds
(b) 0.56275 5 0.549 in Eq. (57). To do so, we need to average Ef7) over all

(© 0.55034 5 0.549 possible configurations of scatterers with a fixed dengity
() 0.50916 4 0.481 (or a fixedN) and a fixed system size. In order to deter-

© 0.35389 2 0.000 mine (1/M?), and(1/M),, we have used three different es-

timates for the distribution of the largest cluster size.
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0.0

0 1.0 20 3'0 4.0 50 FIG. 9. Probability distribution for the largest cluster siein
r a system of sizé =100 andp=0.4. The dotted, dashed, and solid
lines correspond, respectively, #,(M), P,(M), and the direct
FIG. 7. Invariant measure(x) of Eq. (25) for configuration(@  measuremenP;(M) obtained by generating 20 000 random con-
of Fig. 6. A thin line indicates the profile for the location of scat- figurations.
terers.
The calculation of the distribution of largest cluster sizes
Note that the distribution for the size of the largest void isc@n be improved in the following way. Léi(M) be the
the same, upon exchanging scattering sites and empty sitdgaction of realizations with no cluster larger thh Then
The first estimate, which is the most crude one, is just the AN _
distribution for havingat leastone cluster of sizé given by AM=1)=AM)[1=Py(M)]. (6D

Note that - P;(M) is the probability that there iso cluster
L-M-2 of sizeM. This recursion relation can be solved by iteration
N=M starting atM =N, whereA(N)=1. The result is
(60)

<L> ' AM)=TIN_ . [1= Py (m)]. 62)
N

P,(M)=L

The probability that the largest cluster sizeMsis then

This expression is valid only for largel and for periodic Po(M)=A(M)—A(M—1)= P1(M)Hm:M+1[1_ P,(m)].
boundary conditions. The numerator in EO) represents (63
the number of ways one can distribute the-M remaining
scatterers among the— M — 2 remaining empty sites once a This expression foP,(M) can be calculated numerically for
cluster of sizeM limited by two empty border sites has been each system size by using the factorial expression given
put in one of the. possible locations. The denominator is the above forP;(M). This is the second expression that was
total number of possible configurations. used for the numerical evaluation of lower bounds. The third
distribution P3(M) for the largest cluster considered here
y y was obtained by simply generating a large number of con-
05 nAnnn M ’_ 1T noan m figurations and finding the largest cluster for each of them.
W Figure 9 compares these three estimates for the distribu-
u tion whenp=0.4 andL=100. AsP;(M) is not bounded, it
1 is cut off such that the probability is normalized. The distri-
bution P,(M) has also to be cut off; otherwise it oscillates
between unphysical positive and negative values at skhall
[but we stress again that formulég)) and(63) are not valid
for smallM valued. The third distributionP3(M) has been
1  averaged over 20 000 configurations.
\- j We now verify that the largest cluster size grows ak In
| for largeL. Figure 10 showd?,(M) for increasing system
J \ sizes. The system size is varied from 100 t8 40d is mul-
AL _',.f \ /‘ AL, N tiplied by 10 between each successive estimation. We check
. L . o that each time the size is multiplied by 10, the maximum
° 10 20 30 40 50 of the distribution is shifted to the right by a constant value.
r Another verification is made by plotting the second moment
FIG. 8. Invariant vector for configuratiofb) of Fig. 6. A thin  (1/M?), calculated with theP, distribution as a function of
line indicates the profile for the location of scatterers. (log;ol) ~2 (see Fig. 11
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FIG. 12. Probability distribution for the large&olid line) and
dominant(dashed lingcluster size in a system of size= 100, for
p=0.4 andB=0. These distributions were obtained by generating
20 000 random configurations.

FIG. 10. Probability distributiorP,(M) for the largest cluster
sizeM for p=0.4, =0, PBC, and system sizésincreasing geo-
metrically from 100 to 18

As already discussed ifL0Q], it is possible in the one-
dimensional case foB<1 and L not too large that the with the numerical measurements of the Ruelle pressure. For

Ruelle pressure is not determined by the largest cluster bdixed L andp, a large number of scatterer configurations has
by a “dominant” cluster with average densipy+ Ap inter-  been generated, and for each of them the largest eigenvalue
mediate betweep and 1. This is indeed what is observed in has been calculated. The average of its logarithm yields a
numerical simulations. A3=0 and forL=100, we have numerical value for the Ruelle pressure.

taken all segments of all lengths, measured the average den- We first consider the case whese< 1. We have collected
sity on each of them, calculated the corresponding Ruellglata for3=0, for which the Ruelle pressure equals the to-
pressure using the mean-field expressi®d), and kept the pological entropy. Figure 13 confirms that numerical data are
one that gives the largest value. We call it the dominanbetween the upper and lower bounds. The lower bounds
cluster. For some configurations it coincides with the largesbased on any of these three distributions are qualitatively the
cluster, but not always. Figure 12 compares the distributionsame.

for dominant and largest clusters. They are different, the first The estimate for the largest cluster distribution, especially
one being slightly shifted towards larger values. Note that dhe one based of;(M), may seem rather crude. In fact,
cluster, dominant for a giveg, may not be dominant for most of the system sizes that we are able to explore numeri-
anotherg value. Another illustration of partial localization in cally are too small for the Ruelle pressure to be entirely

high-density regions instead of solid clusters was given byominated by the largest cluster and no improvement of the
Fig. 8. estimates folP(M) is likely to make the quantitative agree-

ment better.

VIIl. AVERAGE RUELLE PRESSURE A more refined prediction for the Ruelle pressure is ob-

Now we can use any of the three estimates for the distri-
bution to calculate the averag¢fe?) over all possible configu- 0.8

rations and compare the resulting lower and upper bounds -
n;
0.06 . : 0s |
0.05 | ~
& oa
o 0.04 | \s_
A
= 003} ]
= 0.03 02t
-
V o0zt
001} | %%.0 02 04 06 0. 1.0
density p
°‘°°o_o 0:2 FIG. 13. Ruelle pressurg(B=0) (solid line) for L=100, as a

function of the densityp, compared with uppefdotted ling and

lower bounds(dashed lines For comparison, the mean-field pre-
FIG. 11. Scaling properties of the second momé&hiM?),, diction has also been indicatédash-dotted linge A more refined

calculated from Fig. 10, as a function of 1/(lgg)? for lower bound based on dominant clusters is also gigashed line

L=100-16, atp=0.4 andB=0. with circles.

0:1 2
1/(log, L)
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TABLE Il. For p=0.2 (large backscattering probabil)tythe

0.8 Ruelle pressure, evaluated numerically by averaging over 10 000
In2 configurations, is compared with the lower bound and the mean-
field value, for different densities of scatterers and a system size
0.6 . L=100.
= o P Numerical Lower Mean
S oal X - p value bound field
=
P 0.2 0.02809 0.02851 0.07713
o2 | : 0.5 0.06583 0.06682 0.19283
e 0.8 0.12211 0.12406 0.30853
%%.0 02 04 . 0.6 08 1.0 Now we address the cage>1. Tables Il and lll give
density p some numerical values for the measured or estimated Ruelle

pressure and for the mean-field predicti@8), in the case of
FIG. 14. Ruelle pressurg(B8=0) (solid line) for L=10 000, as L=100 andB=2. Whenq is large (Table lIl), the lower
a function of the density, compared with uppefdotted ling and  bound is not only a lower bound but also a good estimate of
lower bounds(dashed linegs For comparison, the mean-field pre- the Ruelle pressure and is much lower than the mean-field
diction has also been indicatédash-dotted ling value. The numerical data are also displayed in Fig. 16.

. o . Whenq is small(Table Il and Fig. 17, the situation is
tained when the distribution for the largest cluster is replacedy, ersed. A good estimate is obtained by using the mean-

_by the distribution for dominant c_Iusters, which were dQﬁnecjﬂeld theory result, while the theoretical lower bound differs
in Sec. VIl. Then the agreement is very good even on a smakiynificantiy from the measured Ruelle pressure. We may
system such as=100(see Fig. 1% roughly estimate under which condition the lower bound will

However, when the system size is increaseet (0000), e 3 petter estimate than the mean-field theory by comparing
we check, within the precision of our measurements, that thg, o corresponding eigenvalues in E¢S7) and (32) with
lower bound based on the largest cluster approximation iﬁzllp

indeed a good estimate of the Ruelle presqitig. 14). It
should be noted that #&=0, the Ruelle pressure is indepen-

BIM p
dent ofp andq and thus these results are valid both for large a7 <(atb)”, (64
or smallq. or with b=g?,
One can also verify that for a given system size, the
mean-field prediction gives a value much lower than the av- _ |Inb|
erage, whereas the configuration with all scatterers are sol- >m- (65

idly packed together has a Ruelle pressure almost equal to
Thus, for a configuration witth. =400 and a given density, dominate over the mean-field result if
any value between the two dash-dotted lines of Fig. 15 can

be realized. — |Inb| |Inq|
T el (66)
0.8 . . . . pllnal  p|inp|
2 — ¢ i.e.,, the system sizek must be typically larger than
0.6 i ’ exd (/p)In g/In p]. On the other hand, at fixdd, 8 must be
f larger than
= |
=
I (Ing)[In(1—p)|
& 04 >1+ , 6
¢ P (p Inp+q Ing)pM ©7

0.2}

TABLE lIl. For p=0.8 (weak backscattering probabiljtythe
Ruelle pressure, evaluated numerically by averaging over 10 000
configurations, is compared with the lower bound and the mean
field value, for different densities of scatterers and a system size

%%.0 02 0.4 06 08 1.0 L=100.
density p
Numerical Lower Mean
FIG. 15. Ruelle pressurg(B=0) as a function of the densigy value bound field
for L=400. The solid line is an average over 10 000 configurations:
The dash-dotted lines are the extreme values obtained for specifft2 0.07218 0.20584 0.07713
configurations, namely, the mean-field configuration and the on®.5 0.17361 0.48190 0.19283
where all scatterers are packed together in a solid cluster. The uppers 0.29033 0.91901 0.30853

bound¢(0)=In 2 is also indicated.
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FIG. 18. Ruelle pressure as a function of the system size in the

FIG. 16. Ruelle pressure as a function of the system size in thgase of weak backscattering probability=0.8) at a low density
case of strong backscattering=0.2) for p=0.2 (O) or p=0.8  ,—0.2(A). Again, the mean-field predictiomash-dotted lingis a
(0J). Lower bounds(solid line9 were obtained using a numerical mych petter estimate for the Ruelle pressure.
determination of the largest cluster size distribution.

between the two effects may eventually promote some inter-

whereM ~In L. This results from an expansion in powers of mediate Configurations. As an i"ustration, we will consider
ﬁ_l [10] It appears that, |q is small, it is necessary to go the COﬂfiguration of Flg 19 The whole |attlce .iS SOlldly
to very largeL and/or 8 values to see the occurrence of filled with scatterers except in the low-density region of size
localization. In the case of Fig. 13=2.0 andL=400 are R. In this region,n isolated scatterers are placed at equal
not large enough to see this phenomenon. Figure 18 shovgiistances from each other. We will compare the weights of a
that this is also the case for a different dengity trajectory T, undergoing only free propagation and back-

The picture of what happens when>q can still be re-  scattering, i.e., confined in a void in a strict sense between
fined. The crossover between trajectories extended over tH#O isolated scatterers, and a traject@gygoing through the
whole lattice (mean field and trajectories localized in the N isolated scatterers and thus exploring the entire low-
largest void(lower bound is in fact not direct. Some inter- density region of siz&.
mediate semilocalization may occur. As mentioned in Sec. Duringt time stepsT; will undergot/[R/(n+1)] back-
VII, this was already evidenced for one-dimensional systemscatterings, whileT, will undergo t/R backscatterings and
at 3<1 (and for allp,q values [10]. We will show now that tn/R forward scatterings. Thus;, has a higher weight than
a similar phenomenon occurs f8>1 whenp>q. We then T if
have not onlya>b, but alsca<1 (8>1). Thus, on the one B (UIR) B (tn/R) <, qALt(n+1)/R] 69)
hand, the particle has a tendency to escape from the void a P q
because backscattering is weak and, on the other hand, g equivalently,p>q. This shows that as soon @s>q,
a<1, the free propagation is still favored over forward |pcalization may occur not in the largest void but in a large
propagation thrOUgh a scattereralf= 1, the second effect is |0W_density region_ However, wheln increasesl we specu-
negligible and the mean-field prediction will be appropriate,|ate that it is more and more likely to find a large void that
as is the case in Figs. 17 and 18.al&1, the competition || nevertheless dominate the result. We have discussed the

dependence of localization on the probabilitywhen 8> 1

0.0 " y y y only, and not wheng<1. Indeed, localization in a void
(B>1) is very sensitive to the strength of backscattering,
02E N 1 much more than localization on a clustgg<1). In a clus-
04l g ter, many scatterers may reverse the velocity of the particle
5 and thus contribute to localization. As a consequence, local-
Cﬁi 06 ization will be possible even for a small backscattering prob-
=¥ ability. In a void, there is only one site at each end of the
> 08 TTe~_ 4 void to send back the particle, and thus having a small back-
~~~~~~~~~~~~~~~ scattering probability makes it difficult to trap the trajectory.
X 2
IX. CONCLUSION
Ve 0.18 020 - 022 0.24 0.26 We conclude this paper with a number of remarks.

1/1nL (i) We have shown that the Ruelle pressure of Lorentz

FIG. 17. Ruelle pressure as a function of the system size in the
case of weak backscattering<0.8) at a high densitp=0.8 (A). - I I L ] -
The lower bound(dashed ling was obtained using a numerical
determination of the largest cluster size distribution. The mean-field FIG. 19. Special configuration, in which a trajectory exploring
prediction(dash-dotted lingis a much better estimate for the Ruelle the whole low-density region may have a higher weighpitq
pressure. than a trajectory remaining in one of the voids.
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lattice gases in the limit of infinite systems is completely (iii) Numerical studies have been performed only in one
determined by rare fluctuations in the configuration of scatdimension. Analytical results showed that the localization
terers. Thus it carries no information on the global structureoccurring in the thermodynamic limit and the extension of
of the disorder. Numerical studies allowed us to show thathe delocalized region aroung=1 can be generalized to
this localization process also holds for finite but large sys-higher dimensions. Localization occurs also for finite but
tems, for all but a small range @& values. Then we were large systems. The only difference with the one-dimensional
able to predict quantitatively the Ruelle pressure for@ll case is that now the lower bound may not be a good estimate
except for a small region aroun@=1. A summary of this for the Ruelle pressure at finite size. Indeed, the lower bound
prediction may be given in the form, f@@<1, chosen here was based on localization in hypercubic do-
mains. In fact, it may happen on domains with much more
general shapes. Localization in higher-dimensional systems
(690  has been discussed in much more detail in REd].
The present type of localization in a dynamic phase space
of trajectories is quite different from Anderson localization
and, forg>1, in disordered conductors, where there is a mobility edge in
two- and three-dimensional systems. The present type of dy-
. namic localization in thermodynamically large disordered
W(B.p)~ ,B(Incg;)[Dép)/loglol:z] if L<Lc(p.p) diffusive systems occurs iany dimension and for alB val-
p In[p”+g”]+O(L™7) if L>Lc(p,p), ues, outside a small region aroupd: 1.

WZDBC(P)
WB.p)=IpP+ 0] = 5 pioa 172

with L.(p,p) ~exdIn g/(p Inp)] and two functionsC(p) and
D(p), which depend on the distribution of the largest cluster ACKNOWLEDGMENTS
size and were studied here numerically. It should be noted The numerical values for the Ruelle pressure in Fig. 13

that the amplitude of the finite-size effects does depend on and Table | were obtained by C. Bokel. We thank J. R
and characterizes the disorder via the above functiofs Dorfman and H. van Beijeren for a fruitful collaboration and

andD(;T). dv di d h | be i i H. A. van der Vorst and G. L. G. Sleijpen for useful discus-

As alrea y discusse 8], these resu ts can be IMMedI” ginns apout iterative methods. C.A. acknowledges support of
ately generalized to a whole class of diffusive systems withy,o £ngqamenteel Onderzoek der Materie Foundation, which
static disorder. The special case of a continuous Lorentz 93s financially supported by the Dutch National Science Foun-

has bee_n bfief'y considered. i0J. i dation (NWO), and of the Center National de la Recherche
Localization phenomena in fact appear very often in phySScientifique.

ics, as soon as there is some competition between energeti-
cally favorable configurations and entropic effects. Some lo-
calization effects were already shown in the framework of
the thermodynamic formalism for deterministic md@$ or
multifractals[5]. However, here such effects are evidenced
in hard-sphere systems as resulting from the quenched disor- |n the case ofN scatterers packed in a single cluster in a
der. Localization occurs on the most extreme fluctuation okystem of siz&. =N-+R— 1 with PBC, a perturbative calcu-
the disorder. For infinitely large systems, this fluctuation|ation for the largest eigenvaluk has been presented in Sec.
may be arbitrarily large, which allows for a very pronounced||| B. Here we calculate the largest eigenvalue directly from
effect. the set of equation€34).

(i) The Ruelle pressure is a characteristic of the dynamics First notice that the bulk equatiori84) impose the rela-
of the system not only for the isolatgfl values where a tion (43) betweenA and the wave numbés, as can be found
direct interpretation can be givésee Sec. )| but also as a in a similar way to Eq(27). Now the wave numbek has to

whole In the same way, in a power spectrum, only some ofye determined from the boundary equations
the points may receive an individual interpretation, but the

APPENDIX A: LARGEST EIGENVALUE FOR A
CONFIGURATION WITH A SINGLE CLUSTER

whole structure of the spectrum is interesting. An open ques- ARU,(1)=aU_ (N)+bU_(N),
tion is to know if enough information has been kept in the

region around3=1 where delocalization doe®t occur, in AU_(1)=bU,(2)+alU_(2),
order to be able for example to reconstruct the structure of

the disorder from it. In this respect, it would be interesting to AU, (N)=aU, (N-1)+bU_(N—1),

rescale the region aroung=1 as the system size increases,
in order to prevent it from shrinking to zero in the thermo-
dynamic limit. The scaling of this region with the system
size has been estimated][ih0].

ARU_(N)=bU_(1)+aU_(1). (A1)

We search for a solution of the form

When localization occurs, the information contained in U.(Hh=Aexdik(lI-1)]+c.c.,
the Ruelle pressure concerns the properties of individual
scatterers. More precisely, the knowledge of gheegions in U_(I=B exd1k(N—1)]+c.c. (A2)

which one given type of scatterers will dominate yields a
measure of what could be called the isotropy of the differenBy inserting this form into Eq(A1), we obtain four equa-
scatterers. tions that determiné andB (complex numbens Nontrivial



5120 C. APPERT AND M. H. ERNST 56
solutions exist only if the determinant of the system van-Setting this determinant equal to zero yields two solutions.
ishes. This yields a transcendental equatiorkftinat can be  We select the one that gives the smallesi.e., the largest
solved using the ansatz eigenvalue, and find expressitf).

o

K=N—1+0o

(A3)

This ansatz is based on the assumption that the present case

is similar to ABC, as soon aR is large enough. This will be APPENDIX B: RECURRENCE FORMULA
correct only forg<1. FOR THE DETERMINANT OF w
The determinant is expanded in powerkoReplacingA
by its expressiori43) in terms ofk, we find For a one-dimensional system, the transition matrix has a
Det= — 4k2(sb—a+b)(AR+a+b) form such that an exact recursion relation can be found to

calculate its determinant. We will first illustrate it for ABC.
X[8b(AR—a—b)—(a+b)(AR+a—b)]. (A4) The transition matrix is of the form

A by, a
b, A
A by az
a, b, A
A Dby
w= a; by A . (B1)

A by oA
b, A

A b
a1 b1 A

If the Ith scatterer is located in sife we defineD, as the determinant of thej2 1 first lines and columns. An auxiliary
quantityE, is obtained fronD, by removing the last column and the penultimate line. Then the following recursion relations
hold:

Di;1=A*®D~bE.;, E,;=bD+a’E. (B2)

Using the initial conditions

D,=A'"?Ro E;=0, (B3)

we can iterate EqgB2) and find the determinant for the whole matvixas

Det(w)=A1"2RnD,. (B4)

The recursive calculation is performed numerically. Bor0 (i.e., A=2), it is possible to calculate the determinant for
matrices up to size 4(—1)? with L =400, beyond which the method is spoiled by numerical overflow problems.
In the case of PBCs, the recursion relations are slightly more complicated. The masrinow of size 4.2 and reads
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A a_ b,
A by, a,
a; by A
A by az
a, b, A
A by
w= a; by A . (B5)

A by oag

b_, A
A b a
a1 b1 A
b, a; A
|
We choose the origin of the lattice such that therends i-1
scatterer in sites 1 arld For PBC, this is always possible if ui=uj— > [uj u]u,. (C2
=0

there are two holes in a row somewhere in the configuration,
which will be the case for all configurationsgt<0.5. Then
b]_: bL: 0

It can be shown that the determinantwefis given by

Finally, u; is equal to the normalized . This process is
iterated untilm vectors are obtained.
A reducedmX m matrix H is defined by

Det(w)=A2"F1D —bDf —a%Ex+2A(—A)-taN, hij:uiflui, (C3
(B6)
such that
whereDy, Ey, Dy, E{ are obtained from the recurrence T
formula (B2) with, respectively, the initial conditionéB3) A=UHU +B, (C4)
and where U/={ug,Uy,...,Un} and B is expected to be small.
D* = A2Ro-Dp. _ hE* Notice that the definition ofi implies thath;, , ; is the norm
1 2 ' " e T :
of uj andh;;=0 if i>j+1. As a consequence, it is straight-
E* = p2— g2 (B7) forward to calculate the determinantldfand thus to find its
1 2 2-

largest eigenvalud by Newton’s methodwe know that it is

smaller thana+b) and the associated eigenvectqr. The

first approximation for the largest eigenvaluenofs taken to
Consider amxn matrix A. We start from a guess, for @A associated witlhy, . If it is not satisfactory, the whole

the right eigenvector. In a classical power method, ondrocess is repeated, takidf, as a new initial guess. The

would apply the matrixA repeatedly to this vector until itis Sizem of the basis has to be tuned in order to optimize the

aligned with the eigenvector associated with the largest ei€fficiency of the method. _ o

genvalue. With Arnoldi’s method, we built a basisrofvec- A difficulty that this method shares with other iterative

tors that will span the vector space more rapidlyj Viectors ~ Mmethods occurs when the largest eigenvalue is almost degen-

{Up,Uy,....u;_1} of the basis have been obtained alreagy, erate with the next smaller one. Then we may by mistake

APPENDIX C: ARNOLDI'S METHOD

is defined as follows. First matriA is applied converge towards the second one. However, this is not a real
problem as long as we are interested in the eigenvalue itself.
uj’ =Au;_;. (C1 It should also be noted that, as usual, convergence theorems

exist only for symmetric matrices, whereas the method has
Then uj’ is orthogonalized with respect to thefirst vectors  been applied here to nonsymmetric matrices.
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